计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (29): 168-171.

• 图形、图像、模式识别 • 上一篇    下一篇

从随机非概率数据中提取粗糙度及其可靠度

王强锋1,李建军2,张公平2   

  1. 1.西北工业大学 机电学院,西安 710072
    2.中国空空导弹研究院,河南 洛阳 471009
  • 出版日期:2012-10-11 发布日期:2012-10-22

Research of extraction of target roughness and its reliability from randomly non-probabilistic data

WANG Qiangfeng1, LI Jianjun2, ZHANG Gongping2   

  1. 1.College of Electromechanical, Northwestern Polytechnical University, Xi’an 710072, China
    2.China Air-borne Missile Academy, Luoyang, Henan 471009, China
  • Online:2012-10-11 Published:2012-10-22

摘要: 针对高程数据不能直观反映地形粗糙度和坡度的问题,提出了地形高程数据的预处理算法和地形特征提取算法并完成相应的地形特征提取。该方法的创新性在于首次将双线性插值重采样算法应用于地形高程数据的预处理和地形特征提取,并建立了相应的数学模型;通过应用某数字地形进行仿真验算表明,基于高程数据的地形信息提取方法是可行且可靠的;为精确识别目标信息和进行地形风险评估提出了一种新的研究思路。

关键词: 高程数据, 地形坡度, 粗糙度, 最小中值平面拟合

Abstract: According to the problem that the elevation data does not reflect the slope and surface roughness of target topography, the preprocessing of topographic elevation data and extraction algorithm of topographic feature are proposed, and the corresponding extraction of topographic feature is done. The innovation is that it is the first time that the bilinear interpolation algorithm is applied in preprocess of elevation data and extraction of topographic feature, as well as the mathematical model is established. By simulation and checking calculation of a certain digital topography example, it is proved that the extraction method of topographic information based on elevation data is feasible and reliable. It provides a new research approach for target information recognition and topography risk assessment accurately.

Key words: elevation data, topographic slope, surface roughness, minimum median plane fitting