计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (32): 29-32.DOI: 10.3778/j.issn.1002-8331.2010.32.008

• 研究、探讨 • 上一篇    下一篇

拟阵下的覆盖模糊粗糙集

李 凯1,祝 峰1,陈 文1,2,汤建国1,佘 堃1   

  1. 1.电子科技大学 计算机科学与工程学院,成都 610054
    2.福州职业技术学院 计算机系,福州 350108
  • 收稿日期:2010-01-22 修回日期:2010-05-21 出版日期:2010-11-11 发布日期:2010-11-11
  • 通讯作者: 李 凯

Fuzzy rough set on covering-based matroid

LI Kai1,ZHU William1,CHEN Wen1,2,TANG Jian-guo1,SHE Kun1   

  1. 1.School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
    2.Department of Computer,Fuzhou Polytechnic College,Fuzhou 350108,China
  • Received:2010-01-22 Revised:2010-05-21 Online:2010-11-11 Published:2010-11-11
  • Contact: LI Kai

摘要: 拟阵是一种图和矩阵的同时推广的概念,而覆盖粗糙集是经典粗糙集的推广。利用拟阵理论研究覆盖模糊粗糙集,从而将两者进行了融合,提出了拟阵覆盖模糊粗糙集的概念,定义了拟阵覆盖近似空间的上下近似。分析了拟阵覆盖模糊粗糙集的相关性质,定义了拟阵覆盖粗糙集下的粗糙度,并通过它来衡量不确定程度,这也进一步推广了粗糙度。

关键词: 粗糙集, 模糊集, 覆盖, 拟阵, 粗糙度

Abstract: Matroid is an extension to graph and matrix,while covering rough set is a generalization of finite rough sets.This paper uses matroid to study covering fuzzy rough sets and combines these two concepts.Firstly,it proposes the concepts of matroid covering-based fuzzy rough sets accordingly and defines the upper and lower approximations of matroid covering approximate space.At the same time,some base attributes of matroid covering fuzzy rough sets have been analyzed.In the end,this paper defines the rough degree in matroid covering fuzzy rough sets and uses it to measure the degree of uncertainty.So,this is a farther more extension to rough degree.

Key words: rough set, fuzzy set, covering, matroid, rough degree

中图分类号: