计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (2): 86-89.
李丽娟1,2,李少东1
LI Lijuan1,2, LI Shaodong1
摘要: 针对DDoS攻击检测中k-means算法对初始聚类中心敏感和要求输入聚类数目的缺点,提出了一种基于动态指数和初始聚类中心点选取的自适应聚类算法(Adaptive Clustering Algorithm),并使用该算法建立DDoS攻击检测模型。通过使用LLS_DDoS_1.0数据集对该模型进行测试并与k-means算法对比,实验结果表明,该算法提高了DDoS攻击的检测率,降低了误警率,验证了检测方法的有效性。