计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (21): 187-193.DOI: 10.3778/j.issn.1002-8331.1910-0087
张震,李浩方,李孟州
ZHANG Zhen, LI Haofang, LI Mengzhou
摘要:
在人口密集场所中,安检是保证公共安全的重要手段。针对人工安检在遇到客流高峰或突发情况时,安检的效率和准确率易受到影响且存在安全隐患的问题,基于YOLO算法,提出了一种改进的Dense-YOLO目标检测算法。通过借鉴稠密网络中特征融合方式改进网络结构;采用改进的K-means算法对自制异常图像数据集进行目标框维度聚类;将卷积层中的卷积和批量归一化进行整合,提升计算效率;采用多尺度训练方式,增强模型对不同尺寸的鲁棒性。实验结果表明,利用改进后的Dense-YOLO算法提升了对小目标的检测,针对安检中可疑物进行检测,mAP达到了91.68%,检测速度提高到59?f/s。改进后的算法有效提升了安检的效率和准确率,一定程度上消除安全隐患。