计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (21): 176-186.DOI: 10.3778/j.issn.1002-8331.1909-0072
张松慧,熊汉江
ZHANG Songhui, XIONG Hanjiang
摘要:
针对兴趣点推荐系统存在的隐式反馈建模用户-POI交互准确率不高和忽视用户签到数据的隐性反馈属性的问题。提出了一种新颖的兴趣点推荐算法。具体而言,采用一种基于神经网络的排序算法来捕获用户-兴趣点的交互关系,结合泊松分解算法和贝叶斯个性化排序技术建模用户的签到行为,将上述2个步骤得到的算法整合到统一的推荐算法架构中,从而提供兴趣点推荐服务。实验结果表明,提出的算法推荐性能优于传统主流先进兴趣点推荐算法。