计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 135-137.
• 数据库、信号与信息处理 • 上一篇 下一篇
柴 毅1,利 节1,唐 婧2
收稿日期:
修回日期:
出版日期:
发布日期:
CHAI Yi1,LI Jie1,TANG Jing2
Received:
Revised:
Online:
Published:
摘要: 由于高维数据聚类的现实意义日益增强,而Parzen窗估计法仅对低维数据集聚类能获得良好的结果,随着维数增加,效率降低,因此对Parzen窗进行加权改进,通过多次仿真实验确定加权函数,将高维数据投射至低维空间,对其聚类,逐步投向高维空间,对结果矩阵进行优化处理,得到更为优良的聚类效果。
关键词: 高维数据, Parzen窗, 聚类
Abstract: Due to the realistic meaning of clustering on high-dimension dataset,excellent result can be acquired when clustering dataset using traditional Parzen window on low-dimension.With the higher dimension,the efficiency decreases quickly.Through many simulate experiments,the weighting function is gained.The high-dimension dataset is shadowed on lower-dimensional space,and clustered,then shadowed back to higher-dimensional space.The result matrix is optimized,and the better clustering effect is gained.
Key words: high-dimensional dataset, Parzen window, clustering
柴 毅1,利 节1,唐 婧2. 改进Parzen窗解决高维数据聚类的方法研究[J]. 计算机工程与应用, 2011, 47(8): 135-137.
CHAI Yi1,LI Jie1,TANG Jing2. Study of clustering using improved Parzen window on high-dimension dataset[J]. Computer Engineering and Applications, 2011, 47(8): 135-137.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I8/135