计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (6): 184-187.

• 图形、图像、模式识别 • 上一篇    下一篇

四参数六点细分法

胡玫瑰,郑红婵,段建伟   

  1. 西北工业大学 理学院 数学系,西安 710129
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-02-21 发布日期:2011-02-21

Six-point subdivision schemes with four parameters

HU Meigui,ZHENG Hongchan,DUAN Jianwei   

  1. Department of Mathematics of Science,Northwestern Polytechnical University,Xi’an 710129,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-02-21 Published:2011-02-21

摘要: 提出一类包含4个参数的六点细分法,它以双参数四点法和三参数六点法作为特殊情况,可以构造光滑插值曲线和光滑逼近曲线,并且可以通过调整4个参数的取值使得曲线达到C4连续。讨论了细分参数对细分法的收敛性及连续性的影响,给出了细分法Ck连续性的充分条件及一些数值算例。

关键词: 细分法, 生成多项式, 一致收敛性, Ck连续性

Abstract: As extension of six-point subdivision schemes with three parameters,a class of six-point subdivision schemes with four parameters is presented for constructing smooth interpolating or approximating subdivision curves.The sufficient condition of [C3]continuity properties are proposed to achieve [C3]continuity by choosing four parameters appropriately.Some computing examples are also given to show efficiency of the proposed subdivision scheme.

Key words: subdivision schemes, generating polynomial, uniform convergence, Ck continuity