计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (35): 199-202.

• 图形、图像、模式识别 • 上一篇    下一篇

融合小波和自适应类增广PCA的人脸识别

赵冬娟,梁久祯   

  1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-12-11 发布日期:2011-12-11

Face recognition using wavelet transform and adaptive class-augmented PCA

ZHAO Dongjuan,LIANG Jiuzhen   

  1. College of IoT Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-12-11 Published:2011-12-11

摘要: 提出了融合小波变换和自适应类增广PCA(CAPCA)的人脸识别算法。用离散小波变换对人脸图像进行压缩,提取人脸的低频分量,再利用自适应的类增广PCA方法对小波变换后的人脸低频分量进行特征提取,从而达到进一步降维的目的。不同于类增广PCA,该方法不需要构建样本的类间信息,使用起来更加灵活,又由于小波变换对图像的预处理,算法的识别率和耗时也得到了进一步的优化。Yale和FERET库上的实验表明了该算法的有效性。

关键词: 人脸识别, 类增广PCA, 小波变换, 特征提取

Abstract: A face recognition approach based on wavelet transform and adaptive class-augmented PCA is proposed.Human face images are compressed using discrete wavelet transform.The features of low-frequency component are extracted by the adaptive class-augmented PCA.Different from traditional class-augmented PCA,the method does not require constructing the between-class information,so it is used more flexibly.Because of the wavelet transform,the recognition rate and time-consuming are both improved.Experiment on Yale and FERET shows the effectiveness of the algorithm.

Key words: face recognition, Class-Augmented Principal Component Analysis(CAPCA), wavelet transform, feature extraction