计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 185-187.
• 图形、图像、模式识别 • 上一篇 下一篇
陈娟娟,彭丰富
收稿日期:
修回日期:
出版日期:
发布日期:
CHEN Juanjuan,PENG Fengfu
Received:
Revised:
Online:
Published:
摘要: 在双曲抛物面上,仿射坐标系下,通过带逼近控制因子的双参数化方法,以及研究其参数间的函数关系构造出一类G2连续样条曲线。当控制多边形是平形四边形时,样条曲线段在逼近控制因子大于某个数时具有保形性质。对这类样条曲线段的逼近问题进行了一定的理论分析。
关键词: 双参数化, 逼近, 样条曲线, 保形
Abstract: Over a hyperbolic paraboloid,a type of splines of G2-continuity can be constructed conveniently based on affine coordinate system,in terms of bi-parametrization equipped with an approximation factor,and studying on a family of functions between these two parameters.When control polygon is a parallelogram,and the approximation factor is greater than certain number,spline curves on it are of shape retention.The approximation effect of the type of splines is theoretically analyzed.
Key words: bi-parametrization, approximation, spline curve, shape retention
陈娟娟,彭丰富. 双曲抛物面上的一类G2连续逼近样条[J]. 计算机工程与应用, 2011, 47(33): 185-187.
CHEN Juanjuan,PENG Fengfu. Approximation splines of G2-continuity over hyperbolic paraboloid[J]. Computer Engineering and Applications, 2011, 47(33): 185-187.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I33/185