计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 185-187.

• 图形、图像、模式识别 • 上一篇    下一篇

双曲抛物面上的一类G2连续逼近样条

陈娟娟,彭丰富   

  1. 桂林电子科技大学 数学与计算科学学院,广西 桂林 541004
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-21 发布日期:2011-11-21

Approximation splines of G2-continuity over hyperbolic paraboloid

CHEN Juanjuan,PENG Fengfu   

  1. School of Mathematics and Computational Science,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-21 Published:2011-11-21

摘要: 在双曲抛物面上,仿射坐标系下,通过带逼近控制因子的双参数化方法,以及研究其参数间的函数关系构造出一类G2连续样条曲线。当控制多边形是平形四边形时,样条曲线段在逼近控制因子大于某个数时具有保形性质。对这类样条曲线段的逼近问题进行了一定的理论分析。

关键词: 双参数化, 逼近, 样条曲线, 保形

Abstract: Over a hyperbolic paraboloid,a type of splines of G2-continuity can be constructed conveniently based on affine coordinate system,in terms of bi-parametrization equipped with an approximation factor,and studying on a family of functions between these two parameters.When control polygon is a parallelogram,and the approximation factor is greater than certain number,spline curves on it are of shape retention.The approximation effect of the type of splines is theoretically analyzed.

Key words: bi-parametrization, approximation, spline curve, shape retention