计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (9): 190-197.DOI: 10.3778/j.issn.1002-8331.1903-0105
刘紫燕,张杰
LIU Ziyan,ZHANG Jie
摘要:
针对传统RRT(快速扩展随机树)寻路算法由于扩展点的随机选取而存在搜索平均、采样效率低、偏离最优解的缺陷,提出一种偏向目标型的改进RRT算法。该算法采用目标偏向策略和气味扩散法来改善扩展节点的选取,使得随机树的生长趋向于目标点,并提出一种基于3次B样条曲线的路径平滑方法,极大地提升了搜索效率和路径质量。在仿真环境下对算法有效性进行验证,并将算法应用到真实环境下。仿真结果表明,与传统RRT算法相比,改进算法的路径长度缩短约22.1%,且路径更为平滑,在复杂环境中避障能力强。将改进RRT算法应用到Turtlebot2中,在真实环境下开展实验,实验结果证明了该算法的可靠性和实用性。