计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (28): 173-175.

• 图形、图像、模式识别 • 上一篇    下一篇

kNN中局部生成模型测度学习

赵传钢   

  1. 北京林业大学 信息学院,北京 100083
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-10-01 发布日期:2011-10-01

Generative local metric learning in k nearest neighbors

ZHAO Chuangang   

  1. Department of Information Science and Technology,Beijing Forestry University,Beijing 100083,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-10-01 Published:2011-10-01

摘要: 已有的关于k近邻测度学习算法的工作主要集中于纯区分模型。在假定隐含的生成模型已知的情况下,提出了一种通过分析样本的k个近邻点的概率密度学习测度的方法。实验表明,这种基于类的生成模型假设学习到的局部测度可以有效改善kNN区分模型的性能。

关键词: k近邻, 测度学习, 生成模型, 区分模型

Abstract: Previous work on metric learning for k Nearest Neighbor(kNN) has focused on purely discriminative approach.A approach is proposed to learn a metric by analyzing the probability distribution on nearest neighbors provided that the underlying generative model is known.Experiments show that this learned local metric can improve the performance of the discriminative kNN approach using simple class conditional generative model.

Key words: k nearest neighbor, metric learning, generative model, discriminative model