计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (24): 100-102.

• 数据库、信号与信息处理 • 上一篇    下一篇

一种改进的再生核支持向量机回归模型

徐立祥1,罗 斌2,谢 进1,3,段宝彬1   

  1. 1.合肥学院 数学与物理系,合肥 230601
    2.安徽大学 计算机科学与技术学院,计算智能与信号处理教育部重点实验室,合肥 230039
    3.合肥工业大学 计算机与信息学院,合肥 230009
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-08-21 发布日期:2011-08-21

Improved reproducing kernel support vector machine regression model

XU Lixiang1,LUO Bin2,XIE Jin1,3,DUAN Baobin1   

  1. 1.Department of Mathmatics & Physics,Hefei University,Hefei 230601,China
    2.Key Lab of Intelligent Computing & Signal Processing of MoE,School of Computer Science & Technology,Anhui University,Hefei 230039,China
    3.School of Computer & Information,Hefei University of Technology,Hefei 230009,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-08-21 Published:2011-08-21

摘要: 基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数进行改进,给出一种新的支持向量机核函数,并提出一种改进的最小二乘再生核支持向量机的回归模型,该回归模型的参数被减少,且仿真实验结果表明:最小二乘支持向量机的核函数采用改进的再生核函数是可行的,改进后的再生核函数不仅具有核函数的非线性映射特征,而且也继承了该再生核函数对非线性逐级精细逼近的特征,回归的效果比一般的核函数更为细腻。

关键词: 支持向量机, 核函数, 再生核, 信号回归

Abstract: Based on the conditions of kernel function of support vector machine,reproducing kernel function on the Sobolev Hilbert space is improved,a new support vector machine kernel function is given,and an improved least squares reproducing kernel support vector machine regression model is proposed,the parameters of the improved model is reduced,the experimental results show the improved reproducing kernel which the least square support vector machine adopts is feasible,improved reproducing kernel function not only possesses the nonlinear mapping characteristics of the kernel function,but also succeeds to good approximation of reproducing kernel function on the nonlinear characteristics step by step,the regression results are more delicate than general kernels function.

Key words: Support Vector Machine(SVM), kernel function, reproducing kernel, signal regression