计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (23): 48-50.
• 研究、探讨 • 上一篇 下一篇
祝华正,何登旭
收稿日期:
修回日期:
出版日期:
发布日期:
ZHU Huazheng,HE Dengxu
Received:
Revised:
Online:
Published:
摘要: 针对基本萤火虫群优化算法在求解多极值函数问题时,随着极值点增多,收敛速度低、精度不高的缺陷,提出了一种小规模多种群的改进萤火虫群算法,实验仿真表明,改进后的萤火虫群算法在求解多极值函数优化问题时,所花时间明显减少且精度也得到了提高。
关键词: 萤火虫群优化算法, 函数优化, 智能算法, 多峰函数
Abstract: With the increase of the extreme points,the convergence speed and the computing accuracy of the Glowworm Swarm Optimization(GSO) algorithm are low and not high.Aiming at the shortcomings of the GSO algorithm,this paper proposes a new improved algorithm of small-scale and Multi-Population Glowworm Swarm Optimization(MPGSO).It is shown by simulation that,compared with GSO,the improved algorithm for solving multi-modal functions can not only obviously reduce the computing time,but also improve the computing accuracy.
Key words: Glowworm Swarm Optimization(GSO), function optimization, intelligent algorithm, multi-modal function
祝华正,何登旭. 一种小规模多种群萤火虫群优化算法[J]. 计算机工程与应用, 2011, 47(23): 48-50.
ZHU Huazheng,HE Dengxu. Small-scale and multi-population glowworm swarm optimization algorithm[J]. Computer Engineering and Applications, 2011, 47(23): 48-50.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I23/48