计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (20): 181-183.
• 图形、图像、模式识别 • 上一篇 下一篇
张春涛,郭 皎,徐家良
收稿日期:
修回日期:
出版日期:
发布日期:
Received:
Revised:
Online:
Published:
摘要: 提出一种基于稀疏表示的半监督降维方法(SpSSDR)。不同于其他基于图的半监督降维方法分步构图,SpSSDR通过稀疏重构系数来同时定义图上边连接性及边权重,再结合边约束信息进行降维。在高维人脸数据上的实验表明,SpSSDR不仅对噪声鲁棒,对边信息的利用也更有效。
关键词: 降维, 连接性与权重, 稀疏表示, 边约束
Abstract: A Semi-Supervised Dimensionality Reduction method based on Sparsity Representation(SpSSDR) is proposed.Unlike other semi-supervised dimensionality reduction methods that construct graphs in steps,SpSSDR simultaneously defines the connectivity and the edges’ weights of a graph via sparsity reconstruction coefficients,and then exploits pairwise constraints for dimensionality reduction.Experiments on high dimensional facial data show that SpSSDR is not only robust to noise but also making use of pairwise constraints efficiently.
Key words: dimensionality reduction, connectivity and weights, sparsity representation, pairwise constraints
张春涛,郭 皎,徐家良. 基于稀疏表示的半监督降维方法[J]. 计算机工程与应用, 2011, 47(20): 181-183.
张春涛,郭 皎,徐家良. Semi-supervised dimensionality reduction based on sparsity representation[J]. Computer Engineering and Applications, 2011, 47(20): 181-183.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I20/181