计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (18): 17-18.
• 博士论坛 • 上一篇 下一篇
李 中,苑津莎
收稿日期:
修回日期:
出版日期:
发布日期:
LI Zhong,YUAN Jinsha
Received:
Revised:
Online:
Published:
摘要: 聚类技术是机器学习、模式识别及数据挖掘等领域中的一个重要研究内容。采用不同相似度测量方式,应用标准模糊C均值聚类算法在UCI的三个知名数据集上完成聚类实验,从正确率和运行效率两个方面对比分析其性能,为聚类分析研究提供了有益的参考。
关键词: 聚类分析, 模糊C均值, 相似度
Abstract: Clustering is a key technology widely used in machine learning,pattern recognition,and data mining.Based on different similarity estimation methods,Fuzzy C-Means(FCM) clustering simulation experiments are implemented on three UCI known data sets,test results are analyzed from both sides of accuracy and running efficiency,and it can give a valuable reference for data clustering.
Key words: cluster analysis, Fuzzy C-Means(FCM), similarity
李 中,苑津莎. 不同相似度测量方式的模糊C均值聚类分析[J]. 计算机工程与应用, 2011, 47(18): 17-18.
LI Zhong,YUAN Jinsha. Cluster analysis of fuzzy C-mean algorithm based on different similarity estimation distances[J]. Computer Engineering and Applications, 2011, 47(18): 17-18.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I18/17