计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (14): 31-33.
• 研究、探讨 • 上一篇 下一篇
刘文远,刘 彬
收稿日期:
修回日期:
出版日期:
发布日期:
LIU Wenyuan,LIU Bin
Received:
Revised:
Online:
Published:
摘要: 针对传统遗传算法易于陷入局部最优解,性能不稳定的问题,提出了一种基于协同进化的自适应遗传算法(CEAGA)。在协同进化的两层框架模型的基础上,引入一个自适应的变异策略,改进了协同进化遗传算法中的局部进化操作,加强了在上层中的局部搜索;在下层,在种群之间采用协同进化算法,克服未成熟收敛,在种群内部进化中引入自适应遗传操作,保护种群中的优秀个体。实验验证CEAGA既具有很快的收敛速度,又具有很好的全局搜索性能。
关键词: 自适应遗传算法, 协同进化, 收敛速度
Abstract: For the problem of local optimum and the performance of stability,an adaptive genetic algorithm based on co-evolution is proposed.Adaptive probability of mutation is applied in local evolution and the capability of local search on the top floor is enhanced.On the bottom floor,co-evolution algorithm is used for solving the premature convergence among sub-populations,and adaptive genetic manipulation is used to protect outstanding individuals in sub-populations.The experiments demonstrate that this algorithm can increase the convergent speed and it has the ability of searching an optimum solution.
Key words: adaptive genetic algorithm, co-evolution, convergent speed
刘文远,刘 彬. 基于协同进化的自适应遗传算法研究[J]. 计算机工程与应用, 2011, 47(14): 31-33.
LIU Wenyuan,LIU Bin. Adaptive genetic algorithm based on co-evolution[J]. Computer Engineering and Applications, 2011, 47(14): 31-33.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I14/31