计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (13): 54-62.DOI: 10.3778/j.issn.1002-8331.1906-0038
宋美,葛玉辉,刘举胜
SONG Mei, GE Yuhui, LIU Jusheng
摘要:
针对PSO算法易陷入局部最优,发生早熟这一先天缺陷,在一定的误差容忍度下,借鉴协同进化理论中主体的能动性,系统的非线性,个体与环境的协同进化及个体的自适应性等优良特性,利用Feigenbaum迭代构造混沌序列,对粒子的位置和速度进行初始化取值;采用非线性和自适应调整策略对算法中的自我学习因子、社会学习因子及惯性权重进行取值,从而形成了动态双重自适应PSO改进算法(DDAPSO)。在单模态和多模态Benchmark函数上对上述算法进行仿真,并与其他5种算法进行了对比,仿真结果表明,DDAPSO算法较其他算法在求解精度、寻优效率和稳定性上具有极大的优势,表现出了较强的寻找全局最优解的能力,具有广泛的应用前景。