计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (13): 191-194.

• 图形、图像、模式识别 • 上一篇    下一篇

2D双树复小波与判别共同矢量结合的人脸认证

龚卫国1,刘燕飞1,杨利平1,肖 虹2,黄宜民2   

  1. 1.重庆大学 光电技术及系统教育部重点实验室,重庆 400044
    2.重庆建设工业有限责任公司 国防科技工业技术中心,重庆 400054
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-05-01 发布日期:2011-05-01

Fusion of 2D dual-tree complex wavelet transform and discriminative common vector for face verification

GONG Weiguo1,LIU Yanfei1,YANG Liping1,XIAO Hong2,HUANG Yimin2   

  1. 1.Key Lab for Optoelectronic Technology & System of the Education Ministry,Chongqing University,Chongqing 400044,China
    2.Science & Technology Center of National Defense Industry,Chongqing Jianshe Industry Co.,Ltd,Chongqing 400054,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-05-01 Published:2011-05-01

摘要: 针对人脸认证中的小样本问题和Gabor小波特征提取的不足,提出一种有效的人脸认证算法。对预处理后的图像进行2D双树复小波变换,将每幅图像不同尺度下多个方向的小波系数幅值作为特征矢量,表征重要的局部信息;将提取的特征矢量向判别共同矢量空间投影,进一步提取具有判别能力的特征,同时进行降维;根据用户特定阈值进行认证。ORL人脸库和FERET子库上的实验结果验证了算法的有效性。

关键词: 2D双树复小波变换, 判别共同矢量, 人脸认证, 特征提取

Abstract: To deal with the small sample size problem and overcome disadvantage of Gabor feature extraction in face verification,an efficient algorithm based on the Discriminative Common Vector(DCV) and 2D Dual-Tree Complex Wavelet Transform(2D DT-CWT) is proposed.The 2D DT-CWT is utilized to filter the preprocessed image,and then the amplitude coefficients of different scales and different orientations are lexicographically ordered to form its feature vector.The dimensionality of 2D DT-CWT features is usually high,so features are projected into DCV subspace to reduce the dimensionality and enhance the discriminative ability.Finally,verification is accomplished according to client-specific threshold.The experimental results on ORL database and FERET subset demonstrate the effectiveness of the proposed algorithm.

Key words: 2D dual-tree complex wavelet transform, discriminative common vector, face verification, feature extraction