计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (20): 129-132.DOI: 10.3778/j.issn.1002-8331.2010.20.037
吴 斌,马 超
WU Bin,MA Chao
摘要: 随着旅游业的发展,从海量旅行数据中挖掘旅客类型和环境因素之间内在的、隐含的相关性,是分析旅游市场状况、预测对相关行业影响的一种有效方法。结合旅行数据特点,并针对现有约束方法的局限性,提出一种基于关系延展路径约束的关联规则并行挖掘算法。该算法有效结合MapReduce并行机制,在关系延展路径约束下生成事务集,提升后续并行效率;同时利用并行方法改进Apriori算法的逐层搜索,带来“二次”效率提升,从而更好更快地把握旅游业发展动态,调整旅游业宏观政策。
中图分类号: