计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (15): 138-141.DOI: 10.3778/j.issn.1002-8331.2010.15.041
张玉颖,顾晓东,汪源源
ZHANG Yu-ying,GU Xiao-dong,WANG Yuan-yuan
摘要: 在H.Jeong的梯形模型的基础上,提出了基于梯形模型和支撑向量机——SVM(Support Vector Machine)的道路检测算法。算法先对视频中提取的图像帧进行预处理,然后采用Kalman滤波及EM算法进行处理,接着用SVM得到道路检测结果,并进行滤波处理得到最终的检测结果。由于算法采用了比BP(Back Propagation)网络具有更好的分类识别效果的SVM,所以比采用BP网络的H.Jeong等人提出的模型具有更好的检测效果。该算法在预处理部分采用脉冲耦合神经网络即(PCNN-Pulse Coupled Neural Network)消除道路上的阴影,减少了光照变化对最终检测结果的不利影响。实验表明,与H.Jeong的梯形及BP算法相比,道路的检测效果更好。
中图分类号: