计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (13): 147-150.DOI: 10.3778/j.issn.1002-8331.2010.13.044
张龙翔
ZHANG Long-xiang
摘要: 提出了一种基于类内自适应加权平均值的模块2DPCA人脸识别方法。该算法对每一类训练样本中每个训练样本的每一子块求类内自适应加权平均值,并用类内自适应加权平均值对训练样本类内的相应子块进行规范化处理,然后由所有规范化后的子块构成总体散布矩阵,从而得到最优投影矩阵;由训练集的全体子块的加权平均值对训练样本的子块和测试样本的子块进行规范化后投影到最优投影矩阵,得到识别特征;最后用最近距离分类器分类。在ORL人脸库上的实验结果表明,提出的方法在识别性能上明显优于2DPCA方法和普通模块2DPCA方法。
中图分类号: