计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (16): 146-148.DOI: 10.3778/j.issn.1002-8331.2009.16.042

• 数据库、信息处理 • 上一篇    下一篇

灰关联度聚类算法在图像检索中的应用

陈湘涛,王爱云,谢伟平   

  1. 湖南大学 计算机与通信学院,长沙 410082
  • 收稿日期:2008-03-27 修回日期:2008-06-24 出版日期:2009-06-01 发布日期:2009-06-01
  • 通讯作者: 陈湘涛

Application of gray association degree clustering algorithm in image retrieval

CHEN Xiang-tao,WANG Ai-yun,XIE Wei-ping   

  1. School of Computer and Communication,Hunan University,Changsha 410082,China
  • Received:2008-03-27 Revised:2008-06-24 Online:2009-06-01 Published:2009-06-01
  • Contact: CHEN Xiang-tao

摘要: 针对K-means聚类算法和相似度计算在实际应用中存在的问题,提出一种基于灰关联度的聚类算法,并将它应用于回转窑图像检索中。介绍了灰关联度及基于灰关联聚类的基本原理,给出了相应的算法,并采用VC++6.0实现。实验证明,该方法不仅在一定程度上克服了欧氏距离的缺陷,而且能够反映各属性间的影响,具有可行性和有效性,有利于实现图像的快速检索。

关键词: 基于内容的图像检索, 灰关联度, 相似度量度

Abstract: A new algorithm of clustering based on gray association degree is presented to develop a method which can solve the problems of K-means and similarity measurement in the practical application.The proposed method introduces the principle of gray association and clustering based on gray association,and the corr-esponding algorithms is designed by VC++6.0.It is proved by experiment that the method not only overcomes the defects of the Euclidean distance on some extent,but also reflects the impact of inspected attribute.The method is applied to the rotary kiln flame image retrieval and the results demonstrate its usefulness and effectiveness,it can improve the speed of image retrieving.

Key words: Content-Based Image Retrieval(CBIR), gray association rule, similarity measurement