计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (16): 141-145.DOI: 10.3778/j.issn.1002-8331.2009.16.041
• 数据库、信息处理 • 上一篇 下一篇
吴成茂
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
WU Cheng-mao
Received:
Revised:
Online:
Published:
Contact:
摘要: 提出了直觉模糊数的非监督模糊C-均值聚类算法。该算法首先定义了直觉模糊数之间的距离,其次构造了直觉模糊数聚类问题的目标函数,最后得到了直觉模糊数聚类的模糊C-均值聚类算法,聚类中心初始化方法,以及相关的聚类有效性函数。实验结果表明,该算法是有效的。
关键词: 模糊集, 直觉模糊集, 模糊C-均值聚类, 聚类有效性函数
Abstract: The fuzzy C-means clustering algorithm based on intuitionistic fuzzy numbers is proposed.It firstly defines the distance of intuitionistic fuzzy numbers,then constructs the objective function of intuitionistic fuzzy clustering questions,at last obtains the fuzzy C-means clustering algorithm based on intuitionistic fuzzy numbers,and the method of intialized clustering centers,and its clustering validity functions.Experimental results show that this algorithm is feasible.
Key words: fuzzy set, intuitionstic fuzzy set, fuzzy C-means clustering algorithm, clustering vadility function
吴成茂. 模糊C-均值算法在直觉模糊数聚类中的应用[J]. 计算机工程与应用, 2009, 45(16): 141-145.
WU Cheng-mao. Fuzzy C-means algorithm applied in intuitionistic fuzzy numbers clustering[J]. Computer Engineering and Applications, 2009, 45(16): 141-145.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/10.3778/j.issn.1002-8331.2009.16.041
http://cea.ceaj.org/CN/Y2009/V45/I16/141