计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (16): 141-145.DOI: 10.3778/j.issn.1002-8331.2009.16.041

• 数据库、信息处理 • 上一篇    下一篇

模糊C-均值算法在直觉模糊数聚类中的应用

吴成茂   

  1. 西安邮电学院 电子与信息工程系,西安 710121
  • 收稿日期:2008-03-27 修回日期:2008-06-02 出版日期:2009-06-01 发布日期:2009-06-01
  • 通讯作者: 吴成茂

Fuzzy C-means algorithm applied in intuitionistic fuzzy numbers clustering

WU Cheng-mao   

  1. Department of Electronics and Information Engineering,Xi’an Institute of Posts and Telecommunications,Xi’an 710121,China
  • Received:2008-03-27 Revised:2008-06-02 Online:2009-06-01 Published:2009-06-01
  • Contact: WU Cheng-mao

摘要: 提出了直觉模糊数的非监督模糊C-均值聚类算法。该算法首先定义了直觉模糊数之间的距离,其次构造了直觉模糊数聚类问题的目标函数,最后得到了直觉模糊数聚类的模糊C-均值聚类算法,聚类中心初始化方法,以及相关的聚类有效性函数。实验结果表明,该算法是有效的。

关键词: 模糊集, 直觉模糊集, 模糊C-均值聚类, 聚类有效性函数

Abstract: The fuzzy C-means clustering algorithm based on intuitionistic fuzzy numbers is proposed.It firstly defines the distance of intuitionistic fuzzy numbers,then constructs the objective function of intuitionistic fuzzy clustering questions,at last obtains the fuzzy C-means clustering algorithm based on intuitionistic fuzzy numbers,and the method of intialized clustering centers,and its clustering validity functions.Experimental results show that this algorithm is feasible.

Key words: fuzzy set, intuitionstic fuzzy set, fuzzy C-means clustering algorithm, clustering vadility function