计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (9): 64-66.
周晓正1,林小竹1,陈 星2,李玉龙3
ZHOU Xiao-zheng1,LIN Xiao-zhu1,CHEN Xing2,LI Yu-long3
摘要: 提出一种新型人工神经网络模型,称为“基于模式神经元的人工神经网络(Pattern Neuron Based Artificial Neural Network,PNBANN)”。与现有的神经计算网络不同,PNBANN是一种完全基于神经元连接的网络模型。网络中的每一个神经元都唯一代表一种模式,每当接收新模式时,自动建立一个新的连接,把信息存储在网络中;而接收已有的模式时,已有的神经元连接得到加强。当模式神经元的输出达到所设定的感觉阈值时,对应模式的信息被记忆。因此,PNBANN就是不断地接收、存储各种信息,并把感觉足够强的模式记忆下来,这一过程更接近于人脑的学习、记忆过程。实验结果证明,PNBANN学习效率高,在学习新知识时不会影响已有的知识,同时具有很强的识别能力。