计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (9): 67-69.

• 理论研究 • 上一篇    下一篇

粒子群优化的BP网络学习算法研究及应用

潘 昊,韩小雷   

  1. 武汉理工大学 计算机科学与技术学院,武汉 430070
  • 收稿日期:2007-07-16 修回日期:2007-10-15 出版日期:2008-03-21 发布日期:2008-03-21
  • 通讯作者: 潘 昊

BP networks training algorithm based on particle swarm optimization

PAN Hao,HAN Xiao-lei   

  1. College of Computer Science,Wuhan University of Technology,Wuhan 430070,China
  • Received:2007-07-16 Revised:2007-10-15 Online:2008-03-21 Published:2008-03-21
  • Contact: PAN Hao

摘要: 提出一种新的基于粒子群优化的BP网络学习算法,该算法是一种全局随机优化算法,将该算法与传统BP—PSO算法对比实验表明:提出的算法性能优于BP算法,而且具有良好的收敛性,并成功应用于水泥水化过程仿真。

关键词: 人工神经网络, 粒子群优化算法, 融合, 水泥水化

Abstract: A novel BP neural networks learning algorithm based on Particle Swarm Optimiation(PSO) is proposed in this paper.A stochastic global optimization technique is used in this proposed algorithm.Comparing experiment between the proposed algorithm and traditional BP-PSO algorithm,the experiment results show that the proposed algorithm does not only superior to BP algorithm,but also has fast congruence speed,and successful applied in simulating Cement Hydration process.

Key words: Artificial Neural Network, Particle Swarm Optimization, syncretize, cement hydration