计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (9): 205-207.

• 工程与应用 • 上一篇    下一篇

基于贝叶斯网络的工业系统维护模型研究

肖 乐1,2,何 欣3,韩 中4   

  1. 1.华中科技大学 控制科学与工程系,武汉 430074
    2.河南工业大学 信息科学与工程学院,郑州 450001
    3.河南大学 计算中心,河南 开封 475001
    4.西安交通大学 CIMS研究所,西安 710049
  • 收稿日期:2007-09-18 修回日期:2007-12-10 出版日期:2008-03-21 发布日期:2008-03-21
  • 通讯作者: 肖 乐

Research on model of industry system maintenance based on bayesian networks

XIAO Le1,2,HE Xin3,HAN Zhong4   

  1. 1.Department of Control Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
    2.College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China
    3.Computing Center,Henan University,Kaifeng,Henan 475001,China
    4.CIMS Institute,Xi’an Jiaotong University,Xi’an 710049,China
  • Received:2007-09-18 Revised:2007-12-10 Online:2008-03-21 Published:2008-03-21
  • Contact: XIAO Le

摘要: 为解决工业系统维护中的设备维护的预知性、适时性和合理性等问题,提出一种基于贝叶斯网络的工业系统维护模型。详细分析并介绍了建立系统维护模型的过程,利用贝叶斯网络解决不确定性问题的优势对问题推理、分析与定位,效果较好。通过应用示例,证明贝叶斯网络模型对工业系统维护实施,维护决策具有有效的指导作用。

关键词: 贝叶斯网络, 预维护, 故障溯源, 先验概率, 后验概率

Abstract: To solve the prevision,timing and rationality of equipment maintenance for industry system maintenance,proposes the model on industry system maintenance based on Bayesian networks.The model of system maintenance is analyzed and gives a particular description.To utilize the superiority of Bayesian networks solving uncertainty to the problem deduced,analyzed and located that is better effect.A practical example verifies that Bayesian networks model has effective direction for maintenance decision and maintenance implementation of industry system.

Key words: Bayesian networks, preventive maintenance, fault source tracing, prior probability, posterior probability