计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (9): 202-204.
郭 锋1,吕 凝1,陈绵书2,刘丽丽1
GUO Feng1,LV Ning1,CHEN Mian-shu2,LIU Li-li1
摘要: 在人脸识别方面,传统的特征提取方法大都是线性方法,不能很好保持样本的拓扑结构。分类方面,支持向量机能够尽量提高学习的泛化能力,防止过学习,是一种很好的分类器。提出了一种基于SNPE和SVM的人脸识别方法。采用有监督模式确定NPE算法中的K值。SNPE算法旨在保持数据的局部流型结构,而且相对于近期提出的LLE算法,它能够适用于训练样本和测试样本,具有更大的实用型。结合两分类支持向量机级联模型进行人脸识别,在ORL人脸数据库上实验表明,算法具有稳健性、快速性等优点,实验效果令人满意。