摘要: 摘 要: 常见问题(FAQ)问答系统是一种在已有的“问题—答案”对集合中找到与用户提问相匹配的问句,并将其对应的答案返回给用户的问答式检索系统。其关键问题是用户提出问句与FAQ库中问句进行相似度计算,找出FAQ库中最相近的问句,并返回事先存储好的问题答案。本文通过对常见问句特点的研究,给出一种基于分解的向量空间模型和语义概念的问句相似度计算方法,其主要思想是对一个问句向量进行分解,提取其三个关键部分:问点,主题词和疑问词,表示成三个分向量,然后对每个分向量计算基于《HIT-IRLab同义词词林》的语义相似度,通过线性加权就可以得出两个问句的语义相似度。试验表明,与传统的基于向量空间模型的TF-DF问句相似度计算方法相比,可以提高问句匹配的精度。