计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (27): 164-167.
• 数据库与信息处理 • 上一篇 下一篇
刘宇宏,王士同,徐红林
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
LIU Yu-hong,WANG Shi-tong,XU Hong-lin
Received:
Revised:
Online:
Published:
Contact:
摘要: 文[1]采用了一种基于动态模型的聚类算法,将时序基因表达数据作为一组时间序列进行动态的聚类分析,得到了较为理想的聚类结果。对上述算法在数据初始化方面进行了合理改进,并利用贝叶斯理论对数据的联合概率分布进行了重新分析。实验表明,提出的改进算法所得聚类结果明显优于原算法所得结果。
关键词: 时序基因表达数据, 自回归模型, 动态模型, 贝叶斯理论
Abstract: This paper refers to a dynamic model-based clustering algorithm in [1],which can analyze a time-course gene expression data as a set of time series dynamically,such that better clustering results can be produced.Some reasonable improvements are used in the initialization hereinafter.And the joint probability distribution for the time-course gene expression dataset is also reanalyzed using Bayes theory.Experimented results demonstrate that the results obtained by the improved clustering algorithm are better than those obtained by the dynamic model-based clustering algorithm.
Key words: time-course gene expression, autoregressive equation, dynamic model, Bayes theory
刘宇宏,王士同,徐红林. 改进的时序基因表达数据动态聚类算法[J]. 计算机工程与应用, 2007, 43(27): 164-167.
LIU Yu-hong,WANG Shi-tong,XU Hong-lin. Improved dynamic model-based clustering for time-course gene expression data[J]. Computer Engineering and Applications, 2007, 43(27): 164-167.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I27/164