计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (26): 72-73.
• 学术探讨 • 上一篇 下一篇
汪 力,冯 源,张持健
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
WANG Li,FENG Yuan,ZHANG Chi-jian
Received:
Revised:
Online:
Published:
Contact:
摘要: 针对以往很多聚类方法不适用于链状分布的样品的情况,运用簇的概念确定新的“重心”点,然后将原始意义上的“距离”改用弧度来表征,再运用神经网络来对样品进行聚类。应用著名的“古斯塔夫森十字”图形进行仿真实验。结果显示:该方法算法简洁,运算迅速,条理清晰,分类准确,适合于处理链状分布的聚类问题。
关键词: 模式识别, 链状分布, 弧度分析, 神经网络
Abstract: Many of the methods of the clustering do not apply to the sample which has the chainlike distribution.In order to dissolve this problem,we find a new center of gravity by applying the concept of cluster,and instead of the distance which we always used by radian,then cluster the sample with Neural Network(NN).Finally the famous graph of “The cross of Gustafson” is used as an example.The result shows that this method is compact,rapid,clear and exact.It is fit for dealing with the clustering of the chainlike distribution.
Key words: pattern recognition, chainlike distribution, radians analyze, Neural Network(NN)
汪 力,冯 源,张持健. 链状分布的神经网络聚类分析[J]. 计算机工程与应用, 2007, 43(26): 72-73.
WANG Li,FENG Yuan,ZHANG Chi-jian. Neural network clustering analyze for chainlike distribution[J]. Computer Engineering and Applications, 2007, 43(26): 72-73.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I26/72