计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (26): 59-61.

• 学术探讨 • 上一篇    下一篇

基于经验模式分解的自适应去噪算法

高云超,桑恩方,刘百峰   

  1. 哈尔滨工程大学 水声工程学院,哈尔滨150001
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-09-11 发布日期:2007-09-11
  • 通讯作者: 高云超

Adaptive de-noising algorithm based on EMD

GAO Yun-chao,SANG En-fang,LIU Bai-feng   

  1. College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-09-11 Published:2007-09-11
  • Contact: GAO Yun-chao

摘要: 基于加性高斯白噪声在经验模式分解算法(Empirical Mode Decomposition,EMD)下的统计特性,提出了一种基于EMD的去噪算法。通过数值仿真,比较了提出的算法与小波域阈值去噪的性能。仿真结果表明,该算法与小波域阈值去噪的效果相似,而不用选择小波基,是一种自适应的去噪算法。

关键词: 经验模式分解, 去噪, 小波域阈值去噪, 滤波

Abstract: Based on the statistic features of uniformly distributed white noise using the Empirical Mode Decomposition(EMD),an adaptive de-noising algorithm based on EMD is proposed.The numerical experiments are made between the Wavelet Threshold De-noise(WTD) and the adaptive method based on EMD.The results show that the adaptive method is similar to WTD,and it is no need to select a mother wavelet,it is adaptive to kinds of signals.

Key words: EMD, de-noise, wavelet threshold de-noise, filter