计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (3): 168-174.DOI: 10.3778/j.issn.1002-8331.1911-0002

• 模式识别与人工智能 • 上一篇    下一篇

自适应尺度的上下文感知相关滤波跟踪算法

茅正冲,陈海东   

  1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 出版日期:2021-02-01 发布日期:2021-01-29

Adaptive Scale Context-Aware Correlation Filter Tracking Algorithm

MAO Zhengchong, CHEN Haidong   

  1. School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2021-02-01 Published:2021-01-29

摘要:

为了解决目标跟踪中常见的尺度变换、相似目标、背景嘈杂等问题,提出了自适应尺度的上下文感知相关滤波跟踪算法。针对以上问题,在相关滤波跟踪算法的基础上将目标周围的上下文信息作为硬负样本引入分类器中学习,强化分类器的判别能力;通过尺度池在线学习判别式尺度滤波器,在目标位置估计最佳目标尺寸;通过图像帧差均值来评估目标状态并自适应调整模型更新的学习率。实验结果表明提出的算法在快速运动、目标形变等场景下鲁棒性较好。

关键词: 尺度变换, 上下文感知, 相关滤波, 帧差均值

Abstract:

In order to solve scale transformation, similar target, occlusion, background noisy and other common problems in target tracking, an adaptive scale context-aware correlation filter tracking algorithm is proposed. In view of the above problems, based on the correlation filter tracking algorithm, the context information around the target is introduced into the classifier as a hard negative sample to enhance the discriminative ability of the classifier. The discriminant scale filter is learned online through the scale pool at the target position and estimate the optimal target size. The target state is evaluated by the mean frame difference and the learning rate of the model update is adaptively adjusted. The experimental results show that the proposed algorithm is robust in fast motion, target deformation and any other scenarios.

Key words: scale transformation, context-aware, correlation filter, mean frame difference