计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (23): 74-76.

• 学术探讨 • 上一篇    下一篇

基于退火的蚁群算法在连续空间优化中的应用

李向丽,杨慧中,魏丽霞   

  1. 江南大学 控制科学与工程研究中心,江苏 无锡 214122
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-08-11 发布日期:2007-08-11
  • 通讯作者: 李向丽

Application of ant colony algorithm based on simulated annealing to continuous space optimization

LI Xiang-li,YANG Hui-zhong,WEI Li-xia   

  1. Research Center of Control Science and Control Engineering,Southern Yangtze University,Wuxi,Jiangsu 214122,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-08-11 Published:2007-08-11
  • Contact: LI Xiang-li

摘要: 研究了蚁群算法在连续空间的函数寻优问题。通过修改蚂蚁信息素的留存方式和行走规则,定义了一个连续空间的蚁群算法。模拟蚂蚁用触角交流信息的过程提出了直接通信的学习机制,增强了蚂蚁的搜索能力。为了防止出现“早熟”现象,在局部搜索过程中嵌入了模拟退火的思想。同时为避免过大的残留信息,选择了新的信息增量计算函数。实例运算证明了算法的有效性。

关键词: 蚁群算法, 连续空间寻优, 学习机制, 模拟退火

Abstract: An ant colony algorithm applied to continuous problems is proposed.This algorithm is defined by modifying both the “trail remaining” and the transfer rules.Based on the processes that ants exchange information through antennas,a novel study strategy“direct communication” is presented,which enhances the ants’ ability to search the continuous space.In the meantime,a strategy of simulated annealing is embedded in the algorithm to improve the optimization performance and prevent “premature” phenomena during the local searching.In order to avoid the large residual information,the new information increment function is applied.Experimental results show that the proposed algorithm is effective.

Key words: ant colony algorithm, continuous space optimization, study strategy, simulated annealing