计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (17): 160-163.

• 数据库与信息处理 • 上一篇    下一篇

基于约束的最大频繁项集挖掘算法

李 芸,李青山   

  1. 西安电子科技大学 软件学院,西安 710071
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-06-11 发布日期:2007-06-11
  • 通讯作者: 李 芸

Algorithm for mining constrained maximal frequent itemsets

LI Yun,LI Qing-shan   

  1. School of Software,Xidian University,Xi’an 710071,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-06-11 Published:2007-06-11
  • Contact: LI Yun

摘要: 为了解决目前带约束的频繁项集挖掘算法在具有长模式的密集型数据库中挖掘的不足,提出了一种快速的基于约束的最大频繁项集挖掘算法。该算法在特定约束条件的基础上运用了深度优先策略和有效的剪枝方法快速挖掘最大频繁项集。实验结果表明了该算法是快速有效的。

关键词: 项约束, 最大频繁项集, 深度优先, 剪枝

Abstract: In order to solve the inefficiency of current itemsets-mining algorithms in mining the constrained frequent itemsets in dense database with long patterns,a fast Constrained Maximal Frequent Itemsets(CMFS) algorithm is proposed in this paper.Based on some special constrained conditions,this algorithm adopts a depth-first scheme and the effective pruning mechanisms to mine maximal frequent itemsets.The experimental results show that this algorithm is fast and effective.

Key words: item constraint, maximal frequent itemsets, depth-first, pruning