计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (22): 219-224.DOI: 10.3778/j.issn.1002-8331.1808-0148
杨静雅,孙林夫,吴奇石
YANG Jingya, SUN Linfu, WU Qishi
摘要: 针对汽车产业链平台售后服务业务中故障数据量大、增长速度快的特点,以及传统FP-growth算法在处理海量数据时的缺陷,提出了基于MapReduce的FP-growth改进算法挖掘汽车售后故障信息间的关联关系。算法同时结合剪枝策略和均衡分组策略的优势,采用剪枝策略减少项集挖掘的迭代次数,基于均衡分组算法实现并行频繁模式挖掘过程的负载均衡。实验结果表明提出的算法性能较优。以汽车产业链协同平台的售后服务历史故障数据为样本,挖掘得到出现频率较高的重要故障件,以及同时发生故障概率较大的关联故障件。