计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (10): 195-198.

• 工程与应用 • 上一篇    下一篇

基于聚类方法的客户交易行为模式识别

张成虎 岳鑫 乐晖   

  1. 西安交通大学经济与金融学院银行信息管理系
  • 收稿日期:2006-08-14 修回日期:1900-01-01 出版日期:2007-04-01 发布日期:2007-04-01
  • 通讯作者: 张成虎

Client Transaction Behavior Pattern Recognition Based on Clustering Method

zhangchenghu XinYue   

  • Received:2006-08-14 Revised:1900-01-01 Online:2007-04-01 Published:2007-04-01
  • Contact: zhangchenghu

摘要: 针对利用金融机构进行洗钱的犯罪行为,为了提高可疑行为客户的识别效率,智能信息技术与KYC标准的结合为反洗钱工作提供了新的思路。论文将模式识别技术应用于反洗钱领域,提出基于聚类方法的客户交易行为模式识别,通过判断客户交易行为模式,识别具有异常交易行为的可疑客户。实验结果验证了该方法的可行性与有效性。

关键词: 反洗钱, 模式识别, 行为特征, 聚类方法

Abstract: Aiming at money laundering through financial institutions, the combination of intelligence information technology and KYC Standard provides a new way for anti-money laundering work to increase the recognition rate of suspicious client. To apply the pattern recognition technology to anti-money laundering field, a clustering based method for client transaction behavior pattern recognition is proposed to identify the suspicious client who has the abnormal transaction behavior through judging whether the client transaction behavior pattern is normal. The experimental results verify the feasibility and validity of the method.

Key words: clustering method, anti-money laundering, pattern recognition, behavior character