计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (1): 65-65.

• 学术探讨 • 上一篇    下一篇

基于PCNN的高斯噪声滤波

李永刚,石美红,魏远旺   

  1. 嘉兴学院
  • 收稿日期:2006-01-09 修回日期:1900-01-01 出版日期:2007-01-01 发布日期:2007-01-01
  • 通讯作者: 李永刚 xiaohe xiaohe

Image Gauss Noise Filtering Based on PCNN

YongGang Li,,   

  1. 嘉兴学院
  • Received:2006-01-09 Revised:1900-01-01 Online:2007-01-01 Published:2007-01-01
  • Contact: YongGang Li

摘要: 本文针对高方差的高斯噪声的特点,提出了一种先定位和去除大噪声像素,后平滑小噪声像素的滤波方法。文中采用类均值滤波方法去除大噪声像素,利用改进的PCNN平滑小噪声像素。与已有的滤波方法相比,该算法在较好地滤除噪声的同时,具有自适应和图像边缘保护能力。实验结果证实了该方法的可行性和有效性。

关键词: 脉冲耦合神经网络, 高斯噪声滤波, 自适应性

Abstract: A new approach of image filtering is presented in this paper concerning Gauss noise with high deviation. This approach firstly locates large noise pixels and only filters these pixels using an analogous average filter, then smoothes small noise pixels through improved Pulse-coupled neural networks. The proposed method works well, and has strong adaptability as well as protecting image edge compared with other filtering methods. The experiment results and comparisons show that this method is feasible and effective.

Key words: Pulse-coupled neural networks(PCNN), Gauss noise filter, Adaptive