计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (18): 89-94.DOI: 10.3778/j.issn.1002-8331.1703-0355
穆 良,程良伦
MU Liang, CHENG Lianglun
摘要: 个性化k-匿名模型能够根据用户隐私偏好实现隐私保护,为用户提供控制位置隐私更多选择性,但由于设置隐私偏好的复杂性,就算最为注重隐私保护的用户也可能忽略一些问题。研究的目的是开发一个框架,帮助用户选择自己的隐私偏好,有效管理和获取来自匿名者的隐私内容。分析一组影响隐私配置选择因素,构建自适应学习模型来帮助用户做出正确的决定,保护他们的隐私信息。随着学习模型的成熟,将以最小的用户干预来管理各种情况下不同用户的隐私偏好,防止隐私泄露,并鼓励用户使用模型推荐的隐私设置。