[1] 崔瑀欣, 陆中, 周伽. 基于多目标人工蜂鸟算法的研制保证等级分配[J]. 航空学报, 2025, 46(4): 300-311.
CUI Y X, LU Z, ZHOU J. Development assurance level assignment based on multi-objective artificial hummingbird algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 300-311.
[2] HE Q, WANG L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems[J]. Engineering Applications of Artificial Intelligence, 2007, 20(1): 89-99.
[3] 侯艳, 任丙飞, 滕少华, 等. 带罐约束的多目标短期炼油调度优化研究[J]. 江西师范大学学报 (自然科学版), 2023, 47(3): 307-316.
HOU Y, REN B F, TENG S H, et al. The multi-objective short-term scheduling optimization with charging-tank-switch-overlap constraint in refinery[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2023, 47(3): 307-316.
[4] ZAFAR M N, MOHANTA J C. Methodology for path planning and optimization of mobile robots: a review[J]. Procedia Computer Science, 2018, 133: 141-152.
[5] 米永强, 高岳林. 求解约束优化问题的改进粒子群优化算法[J]. 江西师范大学学报(自然科学版), 2015, 39(1): 59-63.
MI Y Q, GAO Y L. The improved particle swarm optimization algorithm for solving constrained optimization problems[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2015, 39(1): 59-63.
[6] ANDERSEN E D, ANDERSEN K D. Presolving in linear programming[J]. Mathematical Programming, 1995, 71(2): 221-245.
[7] EDDY S R. What is dynamic programming?[J]. Nature Biotechnology, 2004, 22(7): 909-910.
[8] AMARI S I. Backpropagation and stochastic gradient descent method[J]. Neurocomputing, 1993, 5(4/5): 185-196.
[9] SADEGHIAN Z, AKBARI E, NEMATZADEH H, et al. A review of feature selection methods based on meta-heuristic algorithms[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2025, 37(1): 1-51.
[10] BLUM C. Ant colony optimization: introduction and recent trends[J]. Physics of Life Reviews, 2005, 2(4): 353-373.
[11] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview[J]. Soft Computing, 2018, 22(2): 387-408.
[12] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[13] YENIAY ?. Penalty function methods for constrained optimization with genetic algorithms[J]. Mathematical and Computational Applications, 2005, 10(1): 45-56.
[14] JIAO R W, ZENG S Y, LI C H. A feasible-ratio control technique for constrained optimization[J]. Information Sciences, 2019, 502: 201-217.
[15] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//Proceedings of the International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 2000: 849-858.
[16] MAVROTAS G. Effective implementation of the ε-constraint method in Multi-Objective mathematical programming problems[J]. Applied Mathematics and Computation, 2009, 213(2): 455-465.
[17] ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[18] FAN Z, LI H, WEI C M, et al. An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems[C]//Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2017: 1-8.
[19] YU Q Q, YANG C, DAI G M, et al. A novel penalty function-based interval constrained multi-objective optimization algorithm for uncertain problems[J]. Swarm and Evolutionary Computation, 2024, 88: 101584.
[20] 吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法: 狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430-2438.
WU H S, ZHANG F M, WU L S. New swarm intelligence algorithm: wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430-2438.
[21] CHEN Y B, MEI Y S, YU J Q, et al. Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm[J]. Neurocomputing, 2017, 266: 445-457.
[22] 杨聿壬, 郭江宇, 靳文兵, 等. 基于改进离散狼群算法的火力分配[J]. 火力与指挥控制, 2024, 49(5): 67-73.
YANG Y R, GUO J Y, JIN W B, et al. Weapon target assignment based on improved discrete wolf pack algorithm[J]. Fire Control & Command Control, 2024, 49(5): 67-73.
[23] 潘星宇, 邹雨澄, 肖人彬, 等. 面向集装箱装船排箱优化调度问题的交互感知狼群算法[J]. 南昌工程学院学报, 2021, 40(4): 77-84.
PAN X Y, ZOU Y C, XIAO R B, et al. An interactive perception wolf pack algorithm for shipping order optimization of containers[J]. Journal of Nanchang Institute of Technology, 2021, 40(4): 77-84.
[24] 赵嘉, 吕丰, 肖人彬, 等. 自适应分组和拥挤距离更新的多目标狼群算法[J]. 控制与决策, 2024, 39(11): 3772-3780.
ZHAO J, LV F, XIAO R B, et al. Multi-objective wolf pack algorithm based on adaptive grouping strategy and crowding distance[J]. Control and Decision, 2024, 39(11): 3772-3780.
[25] 马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 29(4): 1201-1206.
MA Y J, YUN W X. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, 29(4): 1201-1206.
[26] HE C, LI M, ZHANG C X, et al. A self-organizing map approach for constrained multi-objective optimization problems[J]. Complex & Intelligent Systems, 2022, 8(6): 5355-5375.
[27] KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480.
[28] MA Z W, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986.
[29] KUMAR A, WU G H, ALI M Z, et al. A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results[J]. Swarm and Evolutionary Computation, 2021, 67: 100961.
[30] COELLO C A C, CORTéS N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.
[31] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
[32] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
[33] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.
[34] LI K, DEB K, ZHANG Q F, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 694-716.
[35] FAN Z, LI W J, CAI X Y, et al. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 665-679.
[36] MING F, GONG W Y, LI D C, et al. A competitive and cooperative swarm optimizer for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(5): 1313-1326.
[37] QIAO K J, YU K J, QU B Y, et al. Dynamic auxiliary task-based evolutionary multitasking for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 642-656.
[38] SUN R Q, ZOU J, LIU Y, et al. A multistage algorithm for solving multiobjective optimization problems with multiconstraints[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(5): 1207-1219.
[39] MING F, GONG W Y, WANG L, et al. Constrained multiobjective optimization via multitasking and knowledge transfer[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(1): 77-89.
[40] ZOU J, SUN R Q, LIU Y, et al. A multipopulation evolutionary algorithm using new cooperative mechanism for solving multiobjective problems with multiconstraint[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(1): 267-280.
[41] TIAN Y, CHENG R, ZHANG X Y, et al. PlatEMO: a MATLAB platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
[42] ZHAO J, CHEN F J, XIAO R B, et al. Multi-modal multi-objective wolf pack algorithm with circumferential scouting and intra-niche interactions[J]. Swarm and Evolutionary Computation, 2025, 93: 101842.
[43] 赵嘉, 胡秋敏, 肖人彬, 等. 求解大规模稀疏优化问题的高维多目标萤火虫算法[J]. 控制与决策, 2024, 39(12): 3989-3996.
ZHAO J, HU Q M, XIAO R B, et al. Many-objective firefly algorithm for solving large-scale sparse optimization problems[J]. Control and Decision, 2024, 39(12): 3989-3996. |