计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 90-109.DOI: 10.3778/j.issn.1002-8331.2504-0270

• 理论与研发 • 上一篇    下一篇

自组织映射更新的双种群约束多目标狼群算法

康水平,唐光清,樊棠怀,王晖,吕莉   

  1. 1.江西水利电力大学 信息工程学院,南昌 330099
    2.江西省水利大数据智能处理与预警技术工程研究中心,南昌 330099
    3.南昌市智慧城市物联感知与协同计算重点实验室,南昌 330099
  • 出版日期:2025-12-01 发布日期:2025-12-01

Dual-Population Constrained Multi-Objective Wolf Pack Algorithm with Self-Organizing Mapping Update

KANG Shuiping, TANG Guangqing, FAN Tanghuai, WANG Hui,LYU Li   

  1. 1.School of Information Engineering, Jiangxi University of Water Resources and Electric Power, Nanchang 330099, China
    2.Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Nanchang 330099, China
    3.Nanchang Key Laboratory of IoT Perception and Collaborative Computing for Smart City, Nanchang 330099, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 为克服多目标狼群算法无法处理约束条件、种群聚集导致其过早陷入局部最优以及更新机制落后致使种群优质信息丢失的缺陷,提出自组织映射更新的双种群约束多目标狼群算法(CMOWPA-S)。该算法构建一种双种群结构,主种群采用约束支配原则确保种群始终在可行域内,辅助种群则不考虑约束条件以增加算法发现优质解的可能性,保证算法在约束条件下的有效性;提出二元优化狩猎策略,奔袭过程加入精英狼辅助头狼召唤狼群,围攻过程引入莱维飞行策略,提升算法逃脱局部最优的能力;设计基于自组织映射的种群更新机制,通过自组织映射提取种群邻域信息以产生优质后代,确保种群优质信息的传递,最后采用环境选择策略淘汰冗余种群。为验证算法性能,在14个模拟约束多目标问题上与4种经典、5种新型约束多目标优化算法比较,在10个真实约束多目标问题上与5种新型约束多目标优化算法比较。实验结果表明,CMOWPA-S能有效解决约束目标优化问题,避免陷入局部最优且获得种群多样性较好的解。

关键词: 狼群算法, 约束优化, 多目标优化, 双种群, 自组织映射

Abstract: To address the shortcomings of conventional multi-objective wolf pack algorithms, including their inability to handle constraints, premature convergence caused by population clustering, and outdated update mechanisms leading to loss of high-quality solutions, this paper proposes a self-organizing map updated dual-population constrained multi-objective wolf pack algorithm (CMOWPA-S). The algorithm constructs a dual-population structure where the main population employs constrained dominance principles to ensure operation within feasible regions, while the auxiliary population disregards constraints to enhance solution quality discovery. A dual-optimization hunting strategy is introduced: elite wolves assist the leader in summoning the pack during the raid phase, and Lévy flight strategy is incorporated in the siege phase to improve local optimum escape capability. A self-organizing map-based population update mechanism is designed to extract neighborhood information for generating superior offspring, ensuring the inheritance of high-quality solutions. Environmental selection strategies are implemented to eliminate redundant populations. To verify the performance of the algorithm, it is compared with 4 classic and 5 emerging constrained multi-objective optimization algorithms on 14 simulated constrained multi-objective problems, and with 5 new constrained multi-objective optimization algorithms on 10 real constrained multi-objective problems. The experimental results show that CMOWPA-S can effectively solve constrained objective optimization problems, avoid falling into local optima, and obtain solutions with good population diversity.

Key words: wolf pack algorithm, constrained optimization, multi-objective optimization, dual-population, self-organizing map