[1] 荣耀, 安晓宇. 智能化开采中视频信息的应用现状及展望[J]. 煤炭科学技术, 2021, 49(S1): 119-123.
RONG Y, AN X Y. Application status and prospect of video information in intelligent mining[J]. Coal Science and Technology, 2021, 49(S1): 119-123.
[2] 王国法, 任怀伟, 富佳兴. 煤矿智能化建设高质量发展难题与路径[J]. 煤炭科学技术, 2025, 53(1): 1-18.
WANG G F, REN H W, FU J X. The challenge and path of high-quality development of coal mine intelligent construction[J]. Coal Science and Technology, 2025, 53(1): 1-18.
[3] 王国法, 庞义辉, 任怀伟, 等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报, 2024, 49(1): 181-202.
WANG G F, PANG Y H, REN H W, et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society, 2024, 49(1): 181-202.
[4] 刘艳菊, 伊鑫海, 李炎阁, 等. 深度学习在场景文字识别技术中的应用综述[J]. 计算机工程与应用, 2022, 58(4): 52-63.
LIU Y J, YI X H, LI Y G, et al. Application of scene text recognition technology based on deep learning: a survey[J]. Computer Engineering and Applications, 2022, 58(4): 52-63.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[6] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[7] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[8] DU Y N, LI C X, GUO R Y, et al. PP-OCR: a practical ultra lightweight OCR system[J]. arXiv:2009.09941, 2020.
[9] DU Y N, LI C X, GUO R Y, et al. PP-OCRv2: bag of tricks for ultra lightweight OCR system[J]. arXiv:2109.03144, 2021.
[10] 高如新, 杜亚博, 常嘉浩. 基于改进YOLOX-S的轻量化煤矸石检测方法研究[J]. 河南理工大学学报(自然科学版), 2024, 43(4): 133-140.
GAO R X, DU Y B, CHANG J H. Study on lightweight coal gangue detection method based on improved YOLOX-S[J]. Journal of Henan Polytechnic University (Natural Science), 2024, 43(4): 133-140.
[11] 徐壮, 钱育蓉, 颜丰. GCW-YOLOv8n: 轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2025, 61(3): 144-154.
XU Z, QIAN Y R, YAN F. GCW-YOLOv8n: lightweight safety helmet wearing detection algorithm[J]. Computer Engineering and Applications, 2025, 61(3): 144-154.
[12] 王琦, 夏鲁飞, 陈天明, 等. 基于改进YOLOv8n的井下人员安全帽佩戴检测[J]. 工矿自动化, 2024, 50(9): 124-129.
WANG Q, XIA L F, CHEN T M, et al. Detection of underground personnel safety helmet wearing based on improved YOLOv8n[J]. Journal of Mine Automation, 2024, 50(9): 124-129.
[13] 张娜, 彭文韬, 赵强, 等. 基于MBE-YOLO的轻量化井下行人检测模型[J]. 矿业研究与开发, 2025, 45(5): 192-199.
ZHANG N, PENG W T, ZHAO Q, et al. Lightweight underground pedestrian detection model based on MBE-YOLO[J]. Mining Research and Development, 2025, 45(5): 192-199.
[14] 姜媛媛, 刘宋波. 基于改进YOLOv8n的煤矿井下钻杆计数方法[J]. 工矿自动化, 2024, 50(8): 112-119.
JIANG Y Y, LIU S B. A coal mine underground drill pipes counting method based on improved YOLOv8n[J]. Journal of Mine Automation, 2024, 50(8): 112-119.
[15] 瞿鹏程, 李敬兆, 刘泽朝. 基于改进YOLOv7和Byte Track的煤矿多目标人员跟踪算法[J]. 煤矿安全, 2025, 56(1): 195-205.
QU P C, LI J Z, LIU Z C. Multi-target personnel tracking algorithm for coal mine based on improved YOLOv7 and Byte Track[J]. Safety in Coal Mines, 2025, 56(1): 195-205.
[16] 李志星, 杨啸龙, 李天昊, 等. 基于YOLOv8的煤矿用钢丝绳损伤检测算法[J]. 电子测量技术, 2024, 47(9): 120-128.
LI Z X, YANG X L, LI T H, et al. YOLOv8-based surface damage detection of mine wire rope[J]. Electronic Measurement Technology, 2024, 47(9): 120-128.
[17] 刘敬敬, 孙凤乾, 张皓翔, 等. 基于YOLOv8的轻量化煤屑颗粒群实例分割方法[J]. 煤炭学报, 2024, 49(S2): 1310-1321.
LIU J J, SUN F Q, ZHANG H X, et al. Case segmentation method of lightweight coal particle swarm based on YOLOv8[J]. Journal of China Coal Society, 2024, 49(S2): 1310-1321.
[18] 贾岚, 徐雪环, 罗德弢, 等. 基于CrossStage-YOLO的跨阶段作物害虫检测[J]. 南京农业大学学报, 2025, 48(3): 744-754.
JIA L, XU X H, LUO D T, et al. Cross-stage crop pest dete-ction based on CrossStage-YOLO[J]. Journal of Nanjing Agricultural University, 2025, 48(3): 744-754.
[19] 田子建, 阳康, 吴佳奇, 等. 基于LMIENet图像增强的矿井下低光环境目标检测方法[J]. 煤炭科学技术, 2024, 52(5): 222-235.
TIAN Z J, YANG K, WU J Q, et al. LMIENet enhanced object detection method for low light environment in underground mines[J]. Coal Science and Technology, 2024, 52(5): 222-235.
[20] 丁玲, 缪小然, 胡建峰, 等. 改进YOLOv8s与DeepSORT的矿工帽带检测及人员跟踪[J]. 计算机工程与应用, 2024, 60(5): 328-335.
DING L, MIAO X R, HU J F, et al. Improved miner chin strap detection and personnel tracking with YOLOv8s and DeepSORT[J]. Computer Engineering and Applications, 2024, 60(5): 328-335.
[21] 韩康, 李敬兆, 陶荣颖. 基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别[J]. 工矿自动化, 2024, 50(3): 82-91.
HAN K, LI J Z, TAO R Y. Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack[J]. Journal of Mine Automation, 2024, 50(3): 82-91.
[22] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[23] OUYANG D, HE S, ZHAN J, et al. Efficient multi-scale attention module with cross-spatial learning[J]. arXiv:2305. 13563, 2023.
[24] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3138-3147.
[25] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[26] LIU C, WANG K, LI Q, et al. Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 2024, 170: 276-284.
[27] LIAO M H, WAN Z Y, YAO C, et al. Real-time scene text detection with differentiable binarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 11474-11481.
[28] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
[29] DU Y K, CHEN Z N, JIA C Y, et al. SVTR: scene text recognition with a single visual model[J]. arXiv:2205.00159, 2022.
[30] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60.
[31] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2025: 1-21.
[32] WANG A , CHEN H , LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[33] TIAN Y, YE Q, DOERMANN D. YOLOv12: attention-centric real-time object detectors[J]. arXiv:2502.12524, 2025. |