计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 264-273.DOI: 10.3778/j.issn.1002-8331.2411-0288

• 图形图像处理 • 上一篇    下一篇

结合聚合特征和注意力的铁路周界入侵检测方法

王辉,李泽龙,叶剑刚,唐孝坤,徐峰   

  1. 1.华东交通大学 信息与软件工程学院,南昌 330013
    2.轨道交通基础设施性能监测与保障国家重点实验室,南昌 330013
    3.衢州市特种设备检验检测研究院,浙江 衢州 324002
  • 出版日期:2025-12-01 发布日期:2025-12-01

Detection Method of Railway Perimeter Intrusion Combined with Compact Features and Attention

WANG Hui, LI Zelong, YE Jiangang, TANG Xiaokun, XU Feng   

  1. 1.School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
    2.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, Nanchang 330013, China
    3.Quzhou Special Equipment Inspection & Testing Research Institute, Quzhou, Zhejiang 324002, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 针对铁路运行环境中周界入侵而影响列车安全运行的情况,为解决现有方法精度差和效率低问题,在YOLOv9模型基础上,提出一种周界入侵异物检测方法。提出聚合特征模块,通过设计一种紧凑的架构来降低网络的计算复杂性,以提高检测效率;提出转置残差多通道注意力,将转置残差结构与设计的多通道注意力相结合,可以减少卷积参数量并使各个通道信息进行充分交互,捕获检测目标的关键信息以提高异物检测精度,避免对异物目标漏检和误检;修改模型的辅助检测分支,在减少模型参数量的情况下,依然可以有效提取图像的特征信息。实验结果显示,所设计模型在铁路周界异物数据集上的mAP@0.5和召回率分别为93.5%和89.2%,较YOLOv9模型分别提升6.1和4.6个百分点,并且在模型参数量上减小54.5%。对比其他主流模型,该模型在mAP@0.5、召回率、误检率和漏检率等评价指标上均达到最优。综上所述,该模型相较于其他主流模型具有一定优越性,在周界入侵检测任务中具有良好的性能。

关键词: 周界入侵, 异物检测, 聚合特征, 转置残差结构, 多通道注意力

Abstract: To address the issue of perimeter intrusions impacting train safety in railway environments, and to overcome the limitations of low accuracy and efficiency in existing methods, a perimeter intrusion foreign object detection approach is proposed based on the YOLOv9 model. The proposed feature aggregation module reduces the network’s computational complexity by employing a compact architecture, thereby enhancing detection efficiency. A multi-channel attention mechanism with inverted residual is proposed by integrating the transposed residual structure with the designed multi-channel attention. This approach reduces the number of convolutional parameters, promotes extensive interaction of information across channels, captures key features of the detection target, enhances anomaly detection accuracy, and minimizes both false negatives and false positives. The modified auxiliary detection branch effectively extracts image feature information while reducing the model’s parameter size. Experimental results demonstrate that the proposed model achieves an mAP@0.5 of 93.5% and a recall rate of 89.2% on the railway perimeter foreign object dataset, outperforming the YOLOv9 model by 6.1 and 4.6 percentage points, respectively, while reducing the model’s parameter count by 54.5%. Compared to other mainstream models, the proposed model achieves superior performance across key evaluation metrics, including mAP@0.5, recall rate, false positive rate, and false negative rate. In summary, the proposed model outperforms other mainstream models and demonstrates strong performance in perimeter intrusion detection tasks.

Key words: perimeter intrusion, foreign object detection, compact features, inverted residual structure, multi-channel attention