[1] HAN X, YU T T, PRADEL M. ConfProf: white-box performance profiling of configuration options[C]//Proceedings of the ACM/SPEC International Conference on Performance Engineering. New York: ACM, 2021: 1-8.
[2] 张弛, 司徒凌云, 王林章. 物联网固件安全缺陷检测研究进展[J]. 信息安全学报, 2021, 6(3): 141-158.
ZHANG C, SITU L Y, WANG L Z. Research progress on security defect detection of IoT firmware[J]. Journal of Cyber Security, 2021, 6(3): 141-158.
[3] XU T Y, ZHOU Y Y. Systems approaches to tackling configuration errors[J]. ACM Computing Surveys, 2015, 47(4): 1-41.
[4] 周书林, 李姗姗, 董威, 等. 软件运行时配置研究综述[J]. 软件学报, 2024, 35(1): 63-86.
ZHOU S L, LI S S, DONG W, et al. Survey on software runtime configuration researches[J]. Journal of Software, 2024, 35(1): 63-86.
[5] 陈伟, 黄翔, 乔晓强, 等. 软件配置错误诊断与修复技术研究[J]. 软件学报, 2015, 26(6): 1285-1305.
CHEN W, HUANG X, QIAO X Q, et al. Research on software misconfiguration troubleshooting[J]. Journal of Software, 2015, 26(6): 1285-1305.
[6] ZHOU S L, LIU X D, LI S S, et al. ConfInLog: leveraging software logs to infer configuration constraints[C]//Proceedings of the 2021 IEEE/ACM 29th International Conference on Program Comprehension. Piscataway: IEEE, 2021: 94-105.
[7] ZHANG Y L, HE H C, LEGUNSEN O, et al. An evolutionary study of configuration design and implementation in cloud systems[C]//Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering. Piscataway: IEEE, 2021: 188-200.
[8] 陈艳, 叶宏杰, 陈伟. 软件系统配置研究综述[J]. 计算机系统应用, 2021, 30(7): 1-12.
CHEN Y, YE H J, CHEN W. Survey on software system configuration[J]. Computer Systems & Applications, 2021, 30(7): 1-12.
[9] RABKIN A, KATZ R. Static extraction of program configuration options[C]//Proceedings of the 2011 33rd International Conference on Software Engineering. Piscataway: IEEE, 2011: 131-140.
[10] DONG Z, ANDRZEJAK A, LO D, et al. ORPLocator: identifying read points of configuration options via static analysis[C]//Proceedings of the 2016 IEEE 27th International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2016: 185-195.
[11] ZHANG S, ERNST M D. Which configuration option should I change?[C]//Proceedings of the 36th International Conference on Software Engineering. New York: ACM, 2014: 152-163.
[12] JIN D P, COHEN M B, QU X, et al. PrefFinder: getting the right preference in configurable software systems[C]//Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering. New York: ACM, 2014: 151-162.
[13] BEHRANG F, COHEN M B, ORSO A. Users beware: preference inconsistencies ahead[C]//Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. New York: ACM, 2015: 295-306.
[14] XU T, JIN X, HUANG P, et al. Early detection of configuration errors to reduce failure damage[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, 2016: 619-634.
[15] CHEN Z M, CHEN P F, WANG P P, et al. DiagConfig: configuration diagnosis of performance violations in configurable software systems[C]//Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2023: 566-578.
[16] XU G Q, DING X R, XU S H, et al. Real-time diagnosis of configuration errors for software of AI server infrastructure[J]. IEEE Transactions on Dependable and Secure Computing, 2023, PP(99): 1-12.
[17] LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): 1-39.
[18] 刘弋, 吴毅坚, 彭鑫, 等. 基于图模型和孤立森林的上帝类检测方法[J]. 软件学报, 2022, 33(11): 4046-4060.
LIU Y, WU Y J, PENG X, et al. God class detection approach based on graph model and isolation forest[J]. Journal of Software, 2022, 33(11): 4046-4060.
[19] ZOU Z P, XIE Y L, HUANG K, et al. A docker container anomaly monitoring system based on optimized isolation forest[J]. IEEE Transactions on Cloud Computing, 2019, 10(1): 134-145.
[20] LI S T, ZHANG K Z, DUAN P H, et al. Hyperspectral anomaly detection with kernel isolation forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(1): 319-329.
[21] HAIDUC S, APONTE J, MORENO L, et al. On the use of automated text summarization techniques for summarizing source code[C]//Proceedings of the 2010 17th Working Conference on Reverse Engineering. Piscataway: IEEE, 2010: 35-44.
[22] RASTKAR S, MURPHY G C, BRADLEY A W J. Generating natural language summaries for crosscutting source code concerns[C]//Proceedings of the 2011 27th IEEE International Conference on Software Maintenance. Piscataway: IEEE, 2011: 103-112.
[23] HAIDUC S, APONTE J, MARCUS A. Supporting program comprehension with source code summarization[C]//Proceedings of the 2010 ACM/IEEE 32nd International Conference on Software Engineering. Piscataway: IEEE, 2010: 223-226.
[24] LIU M W, PENG X, MENG X J, et al. Source code based on-demand class documentation generation[C]//Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution. Piscataway: IEEE, 2020: 864-865.
[25] MALHOTRA M, KUMAR CHHABRA J. Class level code summarization based on dependencies and micro patterns[C]//Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies. Piscataway: IEEE, 2018: 1011-1016.
[26] GIL J Y, MAMAN I. Micro patterns in Java code[C]//Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications. New York: ACM, 2005: 97-116.
[27] DRAGAN N, COLLARD M L, MALETIC J I. Reverse engineering method stereotypes[C]//Proceedings of the 2006 22nd IEEE International Conference on Software Maintenance. Piscataway: IEEE, 2006: 24-34.
[28] DRAGAN N, COLLARD M L, MALETIC J I. Automatic identification of class stereotypes[C]//Proceedings of the 2010 IEEE International Conference on Software Maintenance. Piscataway: IEEE, 2010: 1-10.
[29] MORENO L, APONTE J, SRIDHARA G, et al. Automatic generation of natural language summaries for Java classes[C]//Proceedings of the 2013 21st International Conference on Program Comprehension. Piscataway: IEEE, 2013: 23-32.
[30] RUNESON P, H?ST M. Guidelines for conducting and reporting case study research in software engineering[J]. Empirical Software Engineering, 2009, 14(2): 131-164.
[31] MCMILLAN C, GRECHANIK M, POSHYVANYK D. Detecting similar software applications[C]//Proceedings of the 2012 34th International Conference on Software Engineering. Piscataway: IEEE, 2012: 364-374.
[32] BUTLER S, WERMELINGER M, YU Y J, et al. Mining Java class naming conventions[C]//Proceedings of the 2011 27th IEEE International Conference on Software Maintenance. Piscataway: IEEE, 2011: 93-102.
[33] NEWMAN C D, ALSUHAIBANI R S, DECKER M J, et al. On the generation, structure, and semantics of grammar patterns in source code identifiers[J]. Journal of Systems and Software, 2020, 170: 110740.
[34] HU X, LI G, XIA X, et al. Deep code comment generation[C]//Proceedings of the 26th Conference on Program Comprehension. New York: ACM, 2018: 200-210.
[35] ROSE S, ENGEL D, CRAMER N, et al. Automatic keyword extraction from individual documents[J]. Text Mining: Applications and Theory, 2010: 1-20.
[36] ALLAMANIS M, BARR E T, DEVANBU P, et al. A survey of machine learning for big code and naturalness[J]. ACM Computing Surveys, 2019, 51(4): 1-37.
[37] SALTON G, BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management, 1988, 24(5): 513-523.
[38] JACCARD P. The distribution of the flora in the alpine zone[J]. New Phytologist, 1912, 11(2): 37-50.
[39] FERNáNDEZ A, GARCíA S, DEL JESUS M J, et al. A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets[J]. Fuzzy Sets and Systems, 2008, 159(18): 2378-2398.
[40] NG W W Y, HU J J, YEUNG D S, et al. Diversified sensitivity-based undersampling for imbalance classification problems[J]. IEEE Transactions on Cybernetics, 2015, 45(11): 2402-2412.
[41] KHAN S H, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3573-3587.
[42] YANG P Y, YOO P D, FERNANDO J, et al. Sample subset optimization techniques for imbalanced and ensemble learning problems in bioinformatics applications[J]. IEEE Transactions on Cybernetics, 2014, 44(3): 445-455.
[43] JING X Y, ZHANG X Y, ZHU X K, et al. Multiset feature learning for highly imbalanced data classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 139-156.
[44] RAGHOTHAMAN M, WEI Y, HAMADI Y. SWIM: synthesizing what I mean: code search and idiomatic snippet synthesis[C]//Proceedings of the 38th International Conference on Software Engineering. New York: ACM, 2016: 357-367.
[45] GU X D, ZHANG H Y, KIM S. Deep code search[C]//Proceedings of the 40th International Conference on Software Engineering. New York: ACM, 2018: 933-944. |