计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 294-306.DOI: 10.3778/j.issn.1002-8331.2406-0354

• 工程与应用 • 上一篇    下一篇

不确定需求下异构电动物流车辆的路径优化研究

初良勇,王嘉宁,丁静茹   

  1. 1.集美大学 航海学院,福建 厦门 361021
    2.福建航运研究院,福建 厦门 361021
  • 出版日期:2025-04-15 发布日期:2025-04-15

Vehicle Routing Optimization for Heterogeneous Electric Logistics Vehicles Under Uncertain Demand

CHU Liangyong, WANG Jianing, DING Jingru   

  1. 1.School of Navigation, Jimei University, Xiamen, Fujian 361021, China
    2.Fujian Shipping Research Institute, Xiamen, Fujian 361021, China
  • Online:2025-04-15 Published:2025-04-15

摘要: 随着国家政策的推动和新能源技术的发展,电动物流车辆在财政补贴、限行政策、节能环保和运营成本等方面相较于传统燃油车辆展现出显著优势,因而越来越多的物流企业在城市配送中采用电动物流车。研究了异构电动车队在应对客户需求不确定性和时间窗要求时的路径优化问题,并针对电动车辆续航里程有限和配送途中充电等实际约束,构建了一个以最小化配送总成本为目标的优化模型。为有效求解该模型,提出了一种结合遗传算法与模拟退火算法的混合方法。实验结果表明,所提出的模型和算法能够显著降低物流配送成本,并为交通和物流企业解决路径优化问题提供了有力的理论支持。

关键词: 车辆路径问题, 异构车型, 电动物流, 遗传-模拟退火算法

Abstract: With the development of new energy technologies and the implementation of supportive national policies, electric logistics vehicles have demonstrated significant advantages over traditional fuel vehicles in terms of financial subsidies, traffic restrictions, energy savings, environmental protection, and operating costs. As a result, more logistics companies are adopting electric vehicles for urban deliveries. This paper investigates the vehicle routing optimization problem for heterogeneous electric vehicle fleets, considering the uncertainty of customer demand and time window constraints. Given the practical challenges of limited driving range and the need for recharging during deliveries, a cost-minimization optimization model is proposed. To solve this model effectively, a hybrid algorithm combining genetic algorithms and simulated annealing is developed. Experimental results show that the proposed model and algorithm significantly reduce logistics costs, providing strong theoretical support for transportation and logistics companies in solving vehicle routing optimization problems under uncertain demand conditions.

Key words: vehicle path problem, heterogeneous vehicle models, electric logistics, genetic-simulated annealing algorithm