计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (6): 369-376.DOI: 10.3778/j.issn.1002-8331.2310-0186

• 工程与应用 • 上一篇    

不确定车辆数的多约束车辆路径问题

马祥丽,马良,张惠珍   

  1. 上海理工大学 管理学院,上海 200093
  • 出版日期:2025-03-15 发布日期:2025-03-14

Multi-Constraint Vehicle Routing Problem with Variable Fleets

MA Xiangli, MA Liang, ZHANG Huizhen   

  1. School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Online:2025-03-15 Published:2025-03-14

摘要: 在经典车辆路径问题 (vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with variable fleets,MVRP-VF)的数学模型。引入遗传算法的交叉操作以及大规模邻域搜索算法中的破坏算子和修复算子,重新定义了基本灰狼优化算法(grey wolf optimizer,GWO)的操作算子,优化了GWO的寻优机制,从而设计出用于求解MVRP-VF问题的混合灰狼优化算法(hybrid grey wolf optimizer,HGWO)。通过仿真实验与其他参考文献中的算法求解结果进行比较,验证了HGWO求解该类问题的有效性与可行性。

关键词: 交通工程, 车辆路径问题, 混合灰狼优化算法, 不确定车辆数, 时间窗

Abstract: On the basis of the classical vehicle routing problem (VRP), this paper adds the time window constraints customer-required, and establishes a mathematical model of the multi-constraint vehicle routing problem with variable fleets (MVRP-VF) with the objective of shortest vehicle routing and the minimum number of vehicles used. By introducing the crossover operation of the genetic algorithm (GA) and the destroy operator and repair operator of the large neighborhood search (LNS), this paper redefines the operator and optimizes the optimization-seeking mechanism of the basic grey wolf optimizer (GWO). A hybrid grey wolf optimizer (HGWO) algorithm is designed for solving the MVRP-VF model. The effectiveness and feasibility of the HGWO for solving the MVRP-VF are verified by comparing the results of simulation experiments with the algorithms in other references.

Key words: traffic engineering, vehicle routing problem, hybrid grey wolf optimizer, variable fleet, time window