计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 241-251.DOI: 10.3778/j.issn.1002-8331.2406-0106

• 图形图像处理 • 上一篇    下一篇

空间频域特征编码下的三维高频表面重建

魏东,张静恬,白宜凡,孙赫   

  1. 沈阳工业大学 信息科学与工程学院,沈阳 110870
  • 出版日期:2025-09-15 发布日期:2025-09-15

Three-Dimensional High-Frequency Surface Reconstruction Under Spatial Frequency Domain Feature Encoding

WEI Dong, ZHANG Jingtian, BAI Yifan, SUN He   

  1. College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 针对现有神经隐式表面重建算法在复杂物体表面高频细节获取、三维体纹理表征以及重建精度方面存在的不足,提出了一种针对高频细节提取的空间频域特征编码网络。该网络利用空间特征三平面有效建模三维点相互依赖关系,并采用基于快速傅里叶变换的高频特征编码模块来增强其特征提取过程的深层频率变化,使生成的物体表面具有更多高频几何细节。为保持重建过程稳定性,构建了一种轻量级MLP解码器来提高表面重建的保真度并抑制空间频域编码过程中产生的噪声。该方法在DTU和NeRF Synthetic 360°数据集中的六个场景下进行测试,与其他算法进行倒角距离和峰值信噪比指标的定量和定性评估,并针对复杂物体前景细节定量评估。实验结果表明,高频特征编码模块和轻量级MLP解码器的引入显著提高了复杂物体的重建精度,重建出的三维几何与纹理表面恢复了更多精细的几何细节。

关键词: 三维表面重建, 快速傅里叶变换, 符号距离函数, 多层感知机, 神经辐射场

Abstract: Aiming at the deficiencies of existing neural implicit surface reconstruction algorithms in capturing high-frequency details on complex object surfaces, representing 3D textures, and reconstruction accuracy, this paper proposes a spatial frequency domain feature encoding network specifically designed for extracting high-frequency details. This network utilizes spatial feature triplanes to effectively model the interdependencies among 3D points and employs a high-frequency feature encoding module based on the fast Fourier transform (FFT) to enhance deep frequency variations during feature extraction, resulting in object surfaces with richer high-frequency geometric details. To maintain stability during the reconstruction process, a lightweight MLP is constructed to improve the fidelity of surface reconstruction and suppress noise generated during spatial frequency domain encoding. The proposed method is tested on six scenes from the DTU and NeRF Synthetic 360° datasets. This paper compares it against other algorithms using chamfer distance (CD) and peak signal-to-noise ratio (PSNR) metrics, and quantitatively evaluates the foreground details of complex objects. Experimental results demonstrate that the introduction of the high-frequency feature encoding module and the lightweight MLP decoder significantly enhances the reconstruction accuracy of complex objects, with the reconstructed 3D geometry and texture surfaces recovering finer geometric details.

Key words: three-dimensional surface reconstruction, fast Fourier transform, sign distance function, multi-layer perceptron, neural radiance field