[1] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 405-421.
[2] 叶子鹏, 夏雯宇, 孙志尧, 等. 从传统渲染到可微渲染: 基本原理、方法和应用[J]. 中国科学(信息科学), 2021, 51(7): 1043-1067.
YE Z P, XIA W Y, SUN Z Y, et al. From traditional rendering to differentiable rendering: theories, methods and applications[J]. Scientia Sinica (Informationis), 2021, 51(7): 1043-1067.
[3] 许威威, 周漾, 吴鸿智, 等. 可微绘制技术研究进展[J]. 中国图象图形学报, 2021, 26(6): 1521-1535.
XU W W, ZHOU Y, WU H Z, et al. Differential rendering: a survey[J]. Journal of Image and Graphics, 2021, 26(6): 1521-1535.
[4] TEWARI A, THIES J, MILDENHALL B, et al. Advances in neural rendering[J]. Journal of the European Association for Computer Graphics, 2022, 41(2):703-735.
[5] WANG P, LIU L, LIU Y, et al. NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021:27171-27183.
[6] YARIV L, GU J, KASTEN Y, et al. Volume rendering of neural implicit surfaces[C]//Advances in Neural Information Processing Systems, 2021:4805-4815.
[7] YU Z, PENG S Y, NIEMEYER M, et al. MonoSDF: exploring monocular geometric cues for neural implicit surface reconstruction[C]//Advances in Neural Information Processing Systems, 2022:25018-25032.
[8] YE S, HU Y, LIN M, et al. Indoor scene reconstruction with fine-grained details using hybrid representation and normal prior enhancement [J]. arXiv:2309.07640, 2023.
[9] CHEN A P, XU Z X, GEIGER A, et al. TensoRF: tensorial radiance fields[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 333-350.
[10] CHAN E R, LIN C Z, CHAN M A, et al. Efficient geometry-aware 3D generative adversarial networks[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16102-16112.
[11] BAHAT Y, ZHANG Y, SOMMERHOFF H, et al. Neural volume super-resolution[J]. arXiv:2212.04666, 2022.
[12] LI M, ZHOU P, LIU J W, et al. Instant3D: instant text-to-3D generation[J]. International Journal of Computer Vision, 2024, 132(10): 4456-4472.
[13] SHUE J R, CHAN E R, PO R, et al. 3D neural field generation using triplane diffusion[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 20875-20886.
[14] JANSEN J, BAVOIL L. Fourier opacity mapping[C]//Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2010: 165-172.
[15] TEWARI A, FRIED O, THIES J, et al. State of the art on neural rendering[J]. Computer Graphics Forum, 2020, 39(2): 701-727.
[16] LINDELL D B, VAN VEEN D, PARK J J, et al. BACON: band-limited coordinate networks for multiscale scene representation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16231-16241.
[17] WANG Y Q, SKOROKHODOV I, WONKA P. HF-NeuS: improved surface reconstruction using high-frequency details[C]//Advances in Neural Information Processing Systems, 2022:1966-1978.
[18] WANG Y Q, SKOROKHODOV I, WONKA P. PET-NeuS: positional encoding tri-planes for neural surfaces[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12598-12607.
[19] ZHAO X D, ZHANG M M, TAO R, et al. Fractional Fourier image transformer for multimodal remote sensing data classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 2314-2326.
[20] FRIGO M, JOHNSON S G. The design and implementation of FFTW3[J]. Proceedings of the IEEE, 2005, 93(2): 216-231.
[21] JAMES W COOLEY J W T. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297-301.
[22] CHATTERJEE S, ZIELINSKI P. On the generalization mystery in deep learning[J]. arXiv:2203.10036, 2023.
[23] ATZMON M, LIPMAN Y. SAL: sign agnostic learning of shapes from raw data[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2562-2571.
[24] KANG G, LEE Y, PARK E. CodecNeRF: toward fast encoding and decoding, compact, and high-quality novel-view synthesis[J]. arXiv:2404.04913, 2024.
[25] JENSEN R, DAHL A, VOGIATZIS G, et al. Large scale multi?view stereopsis evaluation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014:406-413.
[26] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]//Proceedings of the European Conference on Computer Vision, 2021: 99-106.
[27] YARIV L, KASTEN Y, MORAN D, et al. Multiview neural surface reconstruction by disentangling geometry and appearance[C]//Proceedings of 2020 IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2020: 2492-2502.
[28] ZHUANG Y Y, ZHANG Q, FENG Y, et al. Anti-aliased neural implicit surfaces with encoding level of detail[C]//Proceedings of the SIGGRAPH Asia 2023 Conference Papers. New York: ACM, 2023: 1-10. |