[1] ZOU Q, JIANG H W, DAI Q Y, et al. Robust lane detection from continuous driving scenes using deep neural networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 41-54.
[2] HUR J, KANG S N, SEO S W. Multi-lane detection in urban driving environments using conditional random fields[C]//Proceedings of the 2013 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2013: 1297-1302.
[3] SUN H, LUO Z M, REN D, et al. Partial Siamese with multiscale bi-codec networks for remote sensing image haze removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4106516.
[4] SUN H, LI B H, DAN Z P, et al. Multi-level feature intera-ction and efficient non-local information enhanced channel attention for image dehazing[J]. Neural Networks, 2023, 163: 10-27.
[5] ALY M. Real time detection of lane markers in urban streets[C]//Proceedings of the 2008 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2008: 7-12.
[6] QIN Z Q, WANG H Y, LI X. Ultra fast structure-aware deep lane detection[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 276-291.
[7] 王学东, 黄宏成. 复杂变道场景下的轻量化车道线检测算法研究[J]. 传动技术, 2023, 37(3): 3-15.
WANG X D, HUANG H C. Research on lightweight lane detection algorithm in complex lane changing scenes[J]. Drive System Technique, 2023, 37(3): 3-15.
[8] CHOI H C, OH S Y. Illumination invariant lane color recognition by using road color reference & neural networks[C]//Proceedings of the 2010 International Joint Conference on Neural Networks. Piscataway: IEEE, 2010: 1-5.
[9] BORKAR A, HAYES M, SMITH M T. Polar randomized Hough transform for lane detection using loose constraints of parallel lines[C]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2011: 1037-1040.
[10] BORKAR A, HAYES M, SMITH M T. Robust lane detection and tracking with ransac and Kalman filter[C]//Proceedings of the 2009 16th IEEE International Conference on Image Processing. Piscataway: IEEE, 2009: 3261-3264.
[11] PAN X G, SHI J P, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[12] KIM J, PARK C. End-to-end ego lane estimation based on sequential transfer learning for self-driving cars[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1194-1202.
[13] NEVEN D, DE BRABANDERE B, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 286-291.
[14] ZHENG T, HUANG Y F, LIU Y, et al. CLRNet: cross layer refinement network for lane detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 888-897.
[15] KIM J, H KIM J, JANG G J, et al. Fast learning method for convolutional neural networks using extreme learning mach-ine and its application to lane detection[J]. Neural Networks, 2017, 87: 109-121.
[16] LI J, MEI X, PROKHOROV D, et al. Deep neural network for structural prediction and lane detection in traffic scene[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 690-703.
[17] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[18] GHAFOORIAN M, NUGTEREN C, BAKA N, et al. EL-GAN: embedding loss driven generative adversarial networks for lane detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2019: 256-272.
[19] 袁志祥, 高永奇. InternDiffuseDet: 结合可变形卷积和扩散模型的目标检测方法[J]. 计算机工程与应用, 2024, 60(12): 203-215.
YUAN Z X, GAO Y Q. InternDiffuseDet: object detection method combining deformable convolution and diffusion model[J]. Computer Engineering and Applications, 2024, 60(12): 203-215.
[20] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773.
[21] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9300-9308.
[22] 蔡腾, 陈慈发, 董方敏. 结合Transformer和动态特征融合的低照度目标检测[J]. 计算机工程与应用, 2024, 60(9): 135-141.
CAI T, CHEN C F, DONG F M. Low-light object detection combining Transformer and dynamic feature fusion[J]. Computer Engineering and Applications, 2024, 60(9): 135-141.
[23] 徐守坤, 顾佳楠, 庄丽华, 等. 基于两阶段计算Transformer的小目标检测[J]. 计算机科学与探索, 2023, 17(12): 2967-2983.
XU S K, GU J N, ZHUANG L H, et al. Small object detection based on two-stage calculation Transformer[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2967-2983.
[24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[25] LI X Y, SUN X F, MENG Y X, et al. Dice loss for data-imbalanced NLP tasks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 465-476.
[26] LENG Z, TAN M, LIU C, et al. Polyloss: a polynomial expansion perspective of classification loss functions[J]. arXiv:2204.12511, 2022.
[27] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[28] PHILION J. FastDraw: addressing the long tail of lane dete-ction by adapting a sequential prediction network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11574-11583.
[29] HOU Y N, MA Z, LIU C X, et al. Learning lightweight lane detection CNNs by self attention distillation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1013-1021.
[30] XU H, WANG S J, CAI X Y, et al. CurveLane-NAS: unifying lane-sensitive architecture search and adaptive point blending[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 689-704. |