[1] PAPAGEORGIOU C P, OREN M, POGGIO T. A general framework for object detection[C]//Proceedings of the IEEE Sixth International Conference on Computer Vision, 1998: 555-562.
[2] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), 2001.
[3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005: 886-893.
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[11] NELSON J, SOLAWETZ J. YOLOv5 is here: state-of-the-art object detection at 140 FPS[EB/OL].[2020-06-10]. https://blog.roboflow.com/yolov5-is-here/.
[12] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[14] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[15] WANG C Y, YEH I H, LIAO H Y M. You only learn one representation: unified network for multiple tasks[J]. arXiv:2105.04206, 2021.
[16] XU S, WANG X, LV W, et al. PP-YOLOE: an evolved version of YOLO[J]. arXiv:2203.16250, 2022.
[17] GALLAGHER J. How to train an ultralytics YOLOv8 oriented bounding box (OBB) model[EB/OL]. [2024-02-06]. https://blog.roboflow.com/train-yolov8-obb-model/.
[18] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[19] CHEN Y, YUAN X, WU R, et al. YOLO-MS: rethinking multi-scale representation learning for real-time object detection[J]. arXiv:2308.05480, 2023.
[20] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[21] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Advances in Neural Information Processing Systems, 2024.
[22] FANG Y, LIAO B, WANG X, et al. You only look at one sequence: rethinking transformer in vision through object detection[C]//Advances in Neural Information Processing Systems, 2021: 26183-26197.
[23] XU X, JIANG Y, CHEN W, et al. DAMO-YOLO: a report on real-time object detection design[J]. arXiv:2211.15444, 2022.
[24] SKALSKI P. How to train YOLO-NAS on a custom dataset[EB/OL].[2023-05-16]. https://blog.roboflow.com/yolo-nas-how-to-train-on-custom-dataset/.
[25] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[26] 茅智慧, 朱佳利, 吴鑫, 等. 基于YOLO的自动驾驶目标检测研究综述[J]. 计算机工程与应用, 2022, 58(15): 68-77.
MAO Z H, ZHU J L, WU X, et al. Review of YOLO based target detection for autonomous driving[J]. Computer Engineering and Applications, 2022, 58(15): 68-77.
[27] 朱弥雪, 刘志强, 张旭, 等. 林火视频烟雾检测算法综述[J]. 计算机工程与应用, 2022, 58(14): 16-26.
ZHU M X, LIU Z Q, ZHANG X, et al. Review of research on video-based smoke detection algorithms[J]. Computer Engineering and Applications, 2022, 58(14): 16-26.
[28] JIANG P, ERGU D, LIU F, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
[29] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88: 303-338.
[30] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014. Cham: Springer International Publishing, 2014: 740-755.
[31] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[32] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[33] WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10186-10195.
[34] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[35] CHU X, LI L, ZHANG B. Make RepVGG greater again: a quantization-aware approach[J]. arXiv:2212.01593, 2022.
[36] 许晓阳, 高重阳. 改进YOLOv7-tiny的轻量级红外车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 74-83.
XU X Y, GAO C Y. Improved YOLOv7-tiny lightweight infrared vehicle target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 74-83.
[37] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and Attention Gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2):453-464.
[38] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X Y. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1):138-150.
[39] ZHOU H, JIANG F, LU H. SSDA-YOLO: semi-supervised domain adaptive YOLO for cross-domain object detection[J]. Computer Vision and Image Understanding, 2023, 229: 103649.
[40] WEI J, WANG Q, ZHAO Z. YOLO-G: improved YOLO for cross-domain object detection[J]. Plos One, 2023, 18(9): e0291241.
[41] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[42] HO J, JAIN A, ABBEEL P. Denoising diffusion probabil-istic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851.
[43] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232.
[44] YOON J, JARRETT D, VAN DER SCHAAR M. Time-series genera-tive adversarial networks[C]//Advances in Neural Information Processing Systems, 2019.
[45] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4401-4410.
[46] LI H, YANG Y, CHANG M, et al. Srdiff: single image super-resolution with diffusion probabilistic models[J]. Neurocomputing, 2022, 479: 47-59.
[47] KHADER F, MUELLER-FRANZES G, ARASTEH S T, et al. Medical diffusion: denoising diffusion probabilistic models for 3d medical image generation[J]. arXiv:2211.03364, 2022.
[48] ZHENG Q, TIAN X, YU Z, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[49] ZHENG Q, SAPONARA S, TIAN X, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18: 659-671.
[50] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[51] ZHOU J, ZHANG B, YUAN X, et al. YOLO-CIR: the network based on YOLO and ConvNeXt for infrared object detection[J]. Infrared Physics & Technology, 2023, 131: 104703.
[52] 连哲, 殷雁君, 云飞, 等. 基于深度学习的自然场景文本检测综述[J]. 计算机工程, 2024, 50(3): 16-27.
LIAN Z, YIN Y J, YUN F, et al. Review of natural scene text detection based on deep learning[J]. Computer Engineering, 2024, 50(3): 16-27. |