计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 304-314.DOI: 10.3778/j.issn.1002-8331.2404-0023

• 网络、通信与安全 • 上一篇    下一篇

虚假数据注入攻击下受扰移动机器人系统弹性STMPC方法研究

孙香香,马凯,范昭,贺宁   

  1. 西安建筑科技大学 机电工程学院, 西安 710055
  • 出版日期:2025-05-01 发布日期:2025-04-30

Research on Resilient STMPC Method for Mobile Robot System with Disturbance Under False Data Injection Attack

SUN Xiangxiang, MA Kai, FAN Zhao, HE Ning   

  1. School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 针对受扰移动机器人系统自触发模型预测控制(self-triggered model predictive control,STMPC)在虚假数据注入(false data injection,FDI)攻击下的安全控制问题,提出了一种基于输入重构的弹性STMPC方法。结合自触发机制非周期采样特性和FDI攻击模型,设计了一种基于关键数据的输入重构机制,以减弱FDI攻击对被控系统的影响。根据状态误差的最优控制问题,设计了重构参数的确定方法,以保证系统在应用重构控制输入后的控制性能。详细分析了所提出弹性STMPC算法的稳定性以及算法可行性。通过仿真和实验验证了所提出算法的有效性。

关键词: 虚假数据注入攻击, 输入重构, 模型预测控制, 弹性控制, 自触发机制

Abstract: A resilient STMPC method based on input reconstruction is proposed to solve the security control problem of self-triggered model predictive control (STMPC) for mobile robot system with disturbance under false data injection (FDI) attack. Firstly, combining the aperiodic sampling characteristics of the self-triggered mechanism and a FDI attack model, an input reconstruction mechanism based on key data is designed to reduce the influence of FDI attack on the controlled system. Secondly, according to the optimal control problem of the state error, the method of determining the reconstruction parameter is designed to ensure the control performance of the system after applying the reconstruction control input. Furthermore, the stability and feasibility of the proposed resilient STMPC algorithm are analyzed in detail. Finally, the effectiveness of the proposed algorithm is verified by simulation and experiment.

Key words: false data injection attack, input reconstruction, model predictive control; resilient control self-triggered mechanism