计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (18): 1-16.DOI: 10.3778/j.issn.1002-8331.2401-0161
蒋玉英,江梦蝶,葛宏义,张元,李广明,陈心雨,温茜茜,陈浩
出版日期:
2024-09-15
发布日期:
2024-09-13
JIANG Yuying, JIANG Mengdie, GE Hongyi, ZHANG Yuan, LI Guangming, CHEN Xinyu, WEN Xixi, CHEN Hao
Online:
2024-09-15
Published:
2024-09-13
摘要: 图像超分辨率是近几十年来图像处理领域的一个重要研究课题,旨在从低分辨率图像中重建出高分辨率图像,其突破了传感器和光学器件制造工艺和成本的限制,从算法方面提高图像分辨率,是一种简单、高效、低成本的方法。太赫兹(Terahertz,THz)图像受到THz波衍射和散射的影响,会产生图像模糊、纹理细节不清晰等问题,越来越多的学者致力于开发THz图像的超分辨率重建方法。根据近年来THz技术与超分辨率重建技术相关文献的研究,对THz图像的三大重建方法进行了详细阐述,重点对基于深度学习的方法进行介绍,并对比了各类算法的重建效果与优缺点;回顾了THz图像质量评价指标和常用数据集,并总结THz图像超分辨率重建技术的相关应用。最后,探讨了THz图像超分辨率重建技术的未来发展趋势。
蒋玉英, 江梦蝶, 葛宏义, 张元, 李广明, 陈心雨, 温茜茜, 陈浩. 太赫兹图像超分辨率重建方法的研究进展[J]. 计算机工程与应用, 2024, 60(18): 1-16.
JIANG Yuying, JIANG Mengdie, GE Hongyi, ZHANG Yuan, LI Guangming, CHEN Xinyu, WEN Xixi, CHEN Hao. Research and Progress on Super-Resolution Reconstruction Methods for Terahertz Images[J]. Computer Engineering and Applications, 2024, 60(18): 1-16.
[1] TONOUCHI M. Cutting-edge Terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. [2] CHENG Y, WANG Y, NIU Y, et al. Concealed object enhancement using multi-polarization information for passive millimeter and Terahertz wave security screening[J]. Optics Express, 2020, 28(5): 6350-6366. [3] TAKIDA Y, NAWATA K, MINAMIDE H. Security screening system based on Terahertz-wave spectroscopic gas detection[J]. Optics Express, 2021, 29(2): 2529-2537. [4] SHI H, LI T, LIU Z, et al. Early detection of gastric cancer via high-resolution Terahertz imaging system[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1052069. [5] CHEN H, CHEN T H, TSENG T F, et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model[J]. Optics Express, 2011, 19(22): 21552-21562. [6] JIANG X, Xu Y, ZHAO D. Terahertz non-destructive testing and imaging of corrosion in coated steel plates[J]. Construction and Building Materials, 2023, 385: 131427. [7] LI J, LI X, YARDIMCI N T, et al. Rapid sensing of hidden objects and defects using a single-pixel diffractive Terahertz sensor[J]. Nature Communications, 2023, 14(1): 6791. [8] HAN C, CHEN Y. Propagation modeling for wireless communications in the Terahertz band[J]. IEEE Communications Magazine, 2018, 56(6): 96-101. [9] HUO Y, DONG X, FERDINAND N. Distributed reconfigurable intelligent surfaces for energy-efficient indoor Terahertz wireless communications[J]. IEEE Internet of Things Journal, 2022, 10(3): 2728-2742. [10] TSAI R Y, HUANG T S. Multiframe image restoration and registration[J]. Multiframe Image Restoration and Registration, 1984, 1: 317-339. [11] SMITH P R. Bilinear interpolation of digital images[J]. Ultramicroscopy, 1981, 6(2): 201-204. [12] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. [13] ZHANG Y, FAN Q, BAO F, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3782-3797. [14] 郭佑东, 凌福日, 姚建铨. 基于梯度变换的太赫兹图像超分辨率重建[J]. 激光技术, 2020, 44(3): 271-277. GUO Y D, LING F R, YAO J Q. Super-resolution reconstruction for Terahertz images based on gradient transform[J]. Laser Technology, 2020, 44(3): 271-277. [15] YUE L, SHEN H, LI J, et al. Image super-resolution: the techniques, applications, and future[J]. Signal Processing, 2016, 128: 389-408. [16] STARK H, OSKOUI P. High-resolution image recovery from image?plane arrays, using convex projections[J]. JOSA A, 1989, 6(11): 1715-1726. [17] 雷茂, 郭锋, 秦明伟. 基于改进POCS算法的太赫兹图像超分辨率重建[J]. 传感器与微系统, 2022, 41(3): 122-125. LEI M, GUO F, QIN M W. Super-resolution reconstruction for Terahertz images based on improved POCS algorithm[J]. Transducer and Microsystem Technologies, 2022, 41(3): 122-125. [18] IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP: Graphical Models and Image Processing, 1991, 53(3): 231-239. [19] ZHAO M, NING J, HU J, et al. Hyperspectral image super-resolution under the guidance of deep gradient information[J]. Remote Sensing, 2021, 13(12): 2382. [20] MA C, RAO Y, CHENG Y, et al. Structure-preserving super resolution with gradient guidance[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7769-7778. [21] GUO Y, LING F, LI H, et al. Super-resolution reconstruction for Terahertz imaging based on sub-pixel gradient field transform[J]. Applied Optics, 2019, 58(23): 6244-6250. [22] CHEESEMAN P, KANEFSKY B, KRAFT R, et al. Super-resolved surface reconstruction from multiple images[J]. Maximum Entropy and Bayesian Methods, 1995, 62: 293-308. [23] 谢云宇, 胡昌华, 师彪, 等. 超分辨率重建技术及其在太赫兹图像中的应用[J]. 系统仿真技术, 2013, 9(4): 306-309. XIE Y Y, HU C H, SHI B, et al. Super-resolution image reconstruction and its application in terahertz images[J]. System Simulation Technology, 2013, 9(4): 306-309. [24] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE transactions on image processing, 2010, 19(11): 2861-2873. [25] 王欢, 郎利影, 庞亚军, 等. 连续波太赫兹成像系统的单幅图像超分辨重建[J]. 红外与激光工程, 2023, 52(1): 271-278. WANG H, LANG L Y, PANG Y J, et al. Single-image super-resolution reconstruction for continuous-wave Terahertz imaging systems[J]. Infrared and Laser Engineering, 2023, 52(1): 271-278. [26] LI Y, ZHAO Y, DENG C, et al. A single-frame Terahertz image super-resolution reconstruction method based on sparse representation theory[C]//Proceedings of the Infrared, Millimeter-Wave, and Terahertz Technologies III, 2014: 243-251. [27] CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004: 275-282. [28] LEI T, TOBIN B, LIU Z, et al. A Terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products[J]. Analytica Chimica Acta, 2021, 1181: 1-9. [29] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [30] YANG R, SINGH S K, TAVAKKOLI M, et al. CNN-LSTM deep learning architecture for computer vision-based modal frequency detection[J]. Mechanical Systems and Signal Processing, 2020, 144: 106885. [31] ZHENG Q, ZHAO P, LI Y, et al. Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification[J]. Neural Computing and Applications, 2021, 33(13): 7723-7745. [32] ZHENG Q, ZHAO P, ZHANG D, et al. MR-DCAE: manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification[J]. International Journal of Intelligent Systems, 2021, 36(12): 7204-7238. [33] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307. [34] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 391-407. [35] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 136-144. [36] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883. [37] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53: 5455-5516. [38] SEBASTIAN R R, GUIRAMAND L, BLANCHARD F. Noise modelling using deep CNN for Terahertz super-resolution imaging[C]//Proceedings of the 2023 Photonics North (PN), 2023: 1-2. [39] LI Z, CEN Z, LI X. A Terahertz image super-resolution reconstruction algorithm based on the deep convolutional neural network[C]//Proceedings of the Optical Sensing and Imaging Technology and Applications, 2017: 353-361. [40] WANG Q, ZHOU H, WANG Y, et al. Super-resolution imaging using very deep convolutional network in Terahertz NDT field[C]//Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), 2020: 438-441. [41] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [42] 卢贺洋, 苏胜君, 袁明辉, 等. 太赫兹图像的超分辨率重建[J]. 红外技术, 2019, 41(1): 59-63. LU H Y, SU S J, YUAN M H, et al. Super-resolution reconstruction of Terahertz images[J]. Infrared Technology, 2019, 41(1): 59-63. [43] SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451. [44] 褚致弘, 张逸竹, 曲秋红, 等. 高空间分辨率高可见度的太赫兹光谱成像研究[J]. 光谱学与光谱分析, 2023, 43(2): 356-362. CHU Z H, ZHANG Y Z, QU Q H, et al. Terahertz spectral imaging with high spatial resolution and high visibility[J]. Spectroscopy and Spectral Analysis, 2023, 43(2): 356-362. [45] LONG Z, WANG T, YOU C W, et al. Terahertz image super-resolution based on a deep convolutional neural network[J]. Applied Optics, 2019, 58(10): 2731-2735. [46] MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems, 2014: 2204-2212. [47] NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. [48] 吕佳, 许鹏程. 多尺度自适应上采样的图像超分辨率重建算法[J]. 计算机科学与探索, 2023, 17(4): 879-891. LYU J, XU P C. Image super-resolution reconstruction algorithm based on multi-scale adaptive upsampling[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 879-891. [49] YANG X, LI X, LI Z, et al. Image super-resolution based on deep neural network of multiple attention mechanism[J]. Journal of Visual Communication and Image Representation, 2021, 75: 103019. [50] YANG X, ZHANG D, WANG Z, et al. Super-resolution reconstruction of Terahertz images based on a deep-learning network with a residual channel attention mechanism[J]. Applied Optics, 2022, 61(12): 3363-3370. [51] RUAN H, TAN Z, CHEN L, et al. Efficient sub-pixel convolutional neural network for Terahertz image super-resolution[J]. Optics Letters, 2022, 47(12): 3115-3118. [52] LI L, ZOU Y, WANG B, et al. Terahertz image super-resolution using an improved attention U-Net[C]//Proceedings of theComputational Imaging VI, 2021: 69-73. [53] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, October 5-9, 2015: 234-241. [54] WANG Y, QI F, WANG J. THz super-resolution imaging based on complex fast deconvolution with incomplete boundaries[C]//Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC), 2022: 2282-2285. [55] LI Y, HU W, ZHANG X, et al. Adaptive Terahertz image super-resolution with adjustable convolutional neural network[J]. Optics Express, 2020, 28(15): 22200-22217. [56] WANG Y, QI F, WANG J. Terahertz image super-resolution based on a complex convolutional neural network[J]. Optics Letters, 2021, 46(13): 3123-3126. [57] HU C, QUAN H, WU X, et al. Terahertz super-resolution nondestructive detection algorithm based on edge feature convolution network[J]. IEEE Access, 2022, 11: 2721-2728. [58] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [59] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690. [60] 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(9): 1990-2010. YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010 [61] WAN Y, ZHANG R, XIAO H, et al. Terahertz image super-resolution reconstruction of passive safety inspection based on generative adversarial network[C]//Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2019: 22-27. [62] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [63] HOU Z, CHA X, AN H, et al. Super-resolution reconstruction of terahertz images based on residual generative adversarial network with enhanced attention[J]. Entropy, 2023, 25(3): 440. [64] CAI J, MENG Z, HO C M. Residual channel attention generative adversarial network for image super-resolution and noise reduction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 454-455. [65] LIU H, GUO H, LIU X. UHA‐CycleGAN: unpaired hybrid attention network based on CycleGAN for Terahertz image super?resolution[J]. IET Image Processing, 2023, 17(8): 2547-2559. [66] 周登文, 马路遥, 田金月, 等. 基于特征融合注意网络的图像超分辨率重建[J]. 自动化学报, 2022, 48(9): 2233-2241. ZHOU D W, MA L Y, TIAN J Y, et al. Feature fusion attention network for image super-resolution[J]. Acta Automatica Sinica, 2022, 48(9): 2233-2241. [67] HOU Z, AN H, HE L, et al. Super-resolution reconstruction algorithm for Terahertz images[C]//Proceedings of the 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML), 2022: 180-185. [68] AN H, HE L, HOU Z, et al. Terahertz image super-resolution reconstruction using unpaired real-world mages[C]//Proceedings of the 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML), 2022: 193-198. [69] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Advances in Neural Information Processing Systems, 2016:?2226-2234. [70] ZHANG Z, ZHANG L, CHEN X, et al. Modified generative adversarial network for super-resolution of Terahertz image[C]//Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD), 2020: 602-605. [71] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. [72] SHEIKH H R, BOVIK A C, DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128. [73] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 586-595. [74] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212. [75] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. [76] BOSSE S, MANIRY D, MüLLER K R, et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE Transactions on Image Processing, 2017, 27(1): 206-219. [77] LIU L, LIU B, HUANG H, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing: Image Communication, 2014, 29(8): 856-863. [78] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision, 2001: 416-423. [79] AGUSTSSON E, TIMOFTE R. Ntire 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 126-135. [80] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88: 303-338. [81] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [82] ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussian denoiser: residual learning of deep cnn for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. [83] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5018-5027. [84] TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. Ntire 2017 challenge on single image super-resolution: methods and results[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 114-125. [85] DANSO S A, LIPING S, HU D, et al. An optimal defect recognition security-based Terahertz low resolution image system using deep learning network[J]. Egyptian Informatics Journal, 2023, 24(3): 100384. [86] 张馨, 赵源萌, 邓朝, 等. 被动式太赫兹图像目标检测研究[J]. 光学学报, 2013, 33(2): 83-88. ZHANG X, ZHAO Y M, DENG C, et al. Study on the passive Terahertz image target detection[J]. Acta Optica Sinica, 2013, 33(2): 83-88. [87] 孙骁, 赵源萌, 邓朝, 等. 基于马尔可夫约束的被动式太赫兹图像复原[J]. 中国激光, 2014, 41(10): 213-218. SUN X, ZHAO Y M, DENG C, et al. Passive Terahertz image restoration based on Markov constraint[J]. Chinese Journal of Lasers, 2014, 41(10): 213-218. [88] HAN D H. Inner defect detection of glass fiber reinforced polymer sandwich panel using pulsed Terahertz imaging based on smoothing and derivative[J]. NDT & E International, 2023.doi:10.1016/j.ndteint.2023.102862. [89] STRAG M, ?WIDERSKI W. Non-destructive inspection of military-designated composite materials with the use of Terahertz imaging[J]. Composite Structures, 2023, 306: 116588. [90] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(4): 92-101. SUN F S, FAN M B, CAO B H, et al. The Terahertz image enhancement model based on adaptive teaching-learning based optimization algorithm with chaotic mapping and differential evolution[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 92-101. [91] 邹园园, 葛庆平, 韩煜, 等. 基于频域滤波的THz图像条纹噪声处理[J]. 计算机工程与应用, 2009, 45(17): 241-243. ZOU Y Y, GE Q P, HAN Y, et al. Stripe noise of THz image processing based on frequency filtering[J]. Computer Engineering and Applications, 2009, 45(17): 241-243. [92] 钟一帆, 任姣姣, 李丽娟, 等. 基于条纹抑制技术的脉冲太赫兹无损检测层析成像[J]. 中国激光, 2020, 47(10): 336-344. ZHONG Y F, REN J J, LI L J, et al. Pulsed Terahertz nondestructive detection tomography based on fringe suppression technology[J]. Chinese Journal of Lasers, 2020, 47(10): 336-344. [93] 张霁旸, 任姣姣, 陈思宏, 等. 小波去噪在太赫兹无损检测中的应用[J]. 中国激光, 2020, 47(1): 326-333. ZHANG J Y, REN J J, CHEN S H, et al. Application of wavelet denoising in Terahertz nondestructive detection[J]. Chinese Journal of Lasers, 2020, 47(1): 326-333. [94] LI H , WU J , LIU C ,et al. Study on pretreatment methods of Terahertz time domain spectral image for maize seeds[J]. IFAC-PapersOnLine, 2018, 51(17): 206-210. [95] HU J, ZHAN C, SHI H, et al. Rapid non-destructive detection of foreign bodies in fish based on Terahertz imaging and spectroscopy[J]. Infrared Physics & Technology, 2023, 131: 104448. [96] JIANG Y, LI G, GE H, et al. Adaptive compressed sensing algorithm for Terahertz spectral image reconstruction based on residual learning[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 281: 121586. [97] JIANG Y, GE H, ZHANG Y. Detection of foreign bodies in grain with Terahertz reflection imaging[J]. Optik, 2019, 181: 1130-1138. [98] ZHAN X, LIU Y, CHEN Z, et al. Revolutionary approaches for cancer diagnosis by Terahertz-based spectroscopy and imaging[J]. TALANTA, 2023, 259: 124483. [99] JACKSON J B, MOUROU M, WHITAKER J F, et al. Terahertz imaging for non-destructive evaluation of mural paintings[J]. Optics Communications, 2008, 281(4): 527-532. [100] AHI K, SHAHBAZMOHAMADI S, ASADIZANJANI N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution Terahertz time-domain spectroscopy and imaging[J]. Optics and Lasers in Engineering, 2018, 104: 274-284. [101] ZHANG Z, LU Y, LV C, et al. Restoration of integrated circuit Terahertz image based on wavelet denoising technique and the point spread function model[J]. Optics and Lasers in Engineering, 2021, 138: 106413. |
[1] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
[2] | 廉露, 田启川, 谭润, 张晓行. 基于神经网络的图像风格迁移研究进展[J]. 计算机工程与应用, 2024, 60(9): 30-47. |
[3] | 杨晨曦, 庄旭菲, 陈俊楠, 李衡. 基于深度学习的公交行驶轨迹预测研究综述[J]. 计算机工程与应用, 2024, 60(9): 65-78. |
[4] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
[5] | 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260. |
[6] | 邱云飞, 王宜帆. 双分支结构的多层级三维点云补全[J]. 计算机工程与应用, 2024, 60(9): 272-282. |
[7] | 叶彬, 朱兴帅, 姚康, 丁上上, 付威威. 面向桌面交互场景的双目深度测量方法[J]. 计算机工程与应用, 2024, 60(9): 283-291. |
[8] | 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15. |
[9] | 孙石磊, 李明, 刘静, 马金刚, 陈天真. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30. |
[10] | 汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[11] | 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55. |
[12] | 周定威, 扈静, 张良锐, 段飞亚. 面向目标检测的数据集标签遗漏的协同修正技术[J]. 计算机工程与应用, 2024, 60(8): 267-273. |
[13] | 常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12. |
[14] | 周钰童, 马志强, 许璧麒, 贾文超, 吕凯, 刘佳. 基于深度学习的对话情绪生成研究综述[J]. 计算机工程与应用, 2024, 60(7): 13-25. |
[15] | 姜良, 张程, 魏德健, 曹慧, 杜昱峥. 深度学习在骨质疏松辅助诊断中的应用[J]. 计算机工程与应用, 2024, 60(7): 26-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||